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Abstract

Physical Bounds

in Information Processing

by

Kevin Sayo

The absolute physical limitations of information processing are derived from quantum mechanical

and thermodynamic concepts. The quantization of information is explained. The processing speed

of a computational model is shown to be limited by the dynamical evolution between orthogonal

states. The information capacity of a computational model is shown to be bounded. The fallacies

of contemporary computational models due to energy dissipation are revealed, and the utilization

of adiabatic processes as a solution is explained.
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1 Introduction

The theory of computation is usually discussed out of physical context. Although com-
putation as it is known today might refer to calculations performed electronically or mentally, a
universal notion would define the term as any processing of information. This would infer that
many processes such as protein folding, phase transitions, spin interaction, or circuitry are all com-
putational models. Referencing the semantic significance of this, all forms of information processing
are intrinsically physical systems dictated by the laws of physics.

Ingenuity has dictated the abilities of human-built computers thus far. Innovations such
as the transistor, integrated circuits, and conceptual breakthroughs such as Von Neumanns com-
puter architecture has allowed computational power to increase exponentially. As manufacturing
techniques have refined, computational power is increased through volumetric efficiency as the phys-
ical space in which the fundamental unit of information–the bit–can occupy becomes smaller and
smaller. Indeed, a single bit of information being processed by a modern computer is comprised of
a number of electrons, usually on the order of 107, in contrast to 1017 as required by early transistor
logic gates in the 1960s.

While by no means is computer technology decelerating in improvement, it becomes at-
tractive to determine what types of computational limits can be derived from physical law: what
bounds exist for which more powerful computers can be built? How might this be done? By con-
struction of a theoretical framework built from various concepts in physics, the ultimate limitations
of computational models can be described explicitly using fundamental constants.

Discussing the physics of computation requires a link between physics, information science,
and computational models. This first requires computational models to have commonly universal
measurements: processing speed and memory space. Conveniently, Boolean logic employed by mod-
ern computers is analogous to two-state systems in nature. Therefore, the ultimate limitations of
computers can be deduced by a straightforward analysis of physics. The link between physics and
fundamental limits of information processing is not new. Information was first linked to physics by
attempts of Szilard (1929) to refute a thought experiment of Maxwell. Shannon (1948) developed
mathematical theory that suggested entropy as a measure of information. Landauer (1961) subse-
quently postulated that the energetic cost of a single bit is not associated with information itself,
but rather tied to the erasure of that information. Besides computer science, other disciplines have
gained new perspectives from these theories; the processing power of the brain for instance could be
hypothesized through thermodynamic observations.

The ultimate bounds of computation derived will seem amusingly far from realization,
but many aspects of the theory are still of relevance. In particular, it will be seen that the entropy
associated with processing information has fascinating thermodynamic implications in contemporary
computers, yet a simple physical process yields a very elegant solution.
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2 Quantifying Information

2.1 Maxwell’s Demon and the birth of Information Theory

Figure 2.1: Cartoon Representation of Maxwell’s
Demon

A thought experiment by Maxwell
subsequently led to the quantification of in-
formation. Expressing doubt in the univer-
sality of the second law of thermodynamics
states, he had devised a paradox now known
as Maxwell’s demon (fig 2.1) in which he chal-
lenged whether the second law of thermody-
namics is only true in the statistical limit.

Attempts to refute Maxwell’s de-
mon suggested a link between physics and
a notion of information. Although many
counter arguments to Maxwell’s thought ex-
periment were made, it was Szilard (1929)
who provided the first quantitative solution.
Szilard concluded that an increase of entropy
within the demon’s brain correlates to a net
increase of entropy, which would uphold the
second law. Szilard’s proof is as follows: Con-
sider an open cylinder with a piston placed in
each end. A demon will close a partition in
the cylinders, containing the particle in half of
the original volume. The demon then deter-
mines which side the particle is in, and pushes
the opposite piston in. The partition is re-
moved, and the particle will perform work on
the opposing piston as it isothermally expands (fig 2.3).

In total, the particle performs

∆W =

�
V

V/2
p(v) dv = kBT

�
V

V/2

1

v
dv = kbT ln2. (2.1)

of work in one cycle, where p = kB
T
, the law of Gay-Lussac. As argued by Szilard, this ’engine’

would produce useful work if in contact with an infinite heat bath. Thus he reasons that gaining
knowledge corresponds to an entropy increase that must occur in the demon’s brain, upholding the
second law of thermodynamics.

In a simpler model, consider a similar system omitting the partition, where a piston is
placed randomly within the cylinder [see (fig 2.3)], and a weight attached to a weight/pulley system
at either end. Should the position of the particle be known after the cylinder is placed, useful work
will be performed as long as the weight is placed on the same side as the particle. Should the
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Figure 2.2: Szilard’s model. Cylinder is in contact with a large heat reservoir. Top: The particle
moves freely within the volume. Middle: The whereabouts of the particle is determined. Partition
is closed and opposite piston is pushed in. Bottom: The partition is opened, and work is performed.

weight be attached randomly to either end without knowledge of position, the average amount of
work performed over many cycles will be zero. Should the position of the particle be known before
placing the weight, the average amount of work performed per cycle will be kbT ln2.

2.2 The Landauer Limit

Brillouin (1951) disagreed with Szilard, reasoning that the system is a closed black body
and that the demon needs to emit light of it’s own in order to make any observation of the particles,
causing an increase of entropy within the cylinder. Landauer (1961) had applied Szilard’s model to
computing. Known as Landauer’s limit, he eliminated conscious components from Szilard’s model
showing that it is the inevitable deletion of memory that causes an increase of entropy.

An abstraction is as follows: consider a chain of cylinders, each containing a single particle
and representing a bit. A particle placed in the left side of the box represents a ’0’, while a particle
on the right side represents a ’1’. (fig 2.4)

Reseting this memory into a reusable state (all 0’s) requires each cell to be compressed so
that the state space is collapsed and the particle is known to be in the left side. This is done by
compressing each cell from the right, collapsing the volume v into v

2 and thus causing an entropy
increase of Nkbln2 where N is the number of bits compressed and kb is the Boltzmann constant. The
role of information here is emphasized: in this model the state of each cell is unknown. Should the
state the cells be known, an adiabatic process can reset the memory and thus entropy is conserved.
For instance, instead of collapsing the state space, each ’1’ cell can be rotated by π very slowly.
Thus, the deletion of a single bit of information is associated with a release of energy of at least

kbT ln2 (2.2)

where T is the temperature of the system. ’Landauer’s limit’, as it is now known, had been the
first ultimate physical limit of information processing. For instance, enumerating every possibility
of a 128-bit encryption key means that 2128 bit flips must occur. The enumeration alone of each
possible number, adhering to Landauer’s limit of kbT ln2 (where T=300K), would require 1018J
of energy. In comparison, the atomic bomb (”Fat Man”) that detonated over Nagasaki in WWII
yielded a high estimate of 1014J of energy. Considering actual computing processes and the fact that
current computers dissipate about 105 times Landauer’s limit per bit flip, this estimate is grossly
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Figure 2.3: A Different Version of Szilard’s Engine

Figure 2.4: Abstraction of physical memory. A tape of atoms where a particle on the left side of
the cylinder represents a ’0’ while a particle on the right represents a ’1’. The tape is uniformly in
contact with a heat bath.
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underestimated. Landauer (1961) had suggested that computing be reversible, in which the computer
would only use time invertible processes requiring theoretically zero free energy to operate. To be
discussed later, physical reversibility in a computer is difficult to achieve, but adiabatic operation of
irreversible circuitry in contemporary computers has the same desired effect.



6

3 The Physics of Information Processing

3.1 The Margolus-Levitin Theorem

A simple two state system allows for the minimum degrees of freedom in information
processing; the quantum mechanical evolution between states is finite in time and thus is a bound of
computational speed (Margolous et al 1998). These states must be distinguishable from each other
and thus mutually orthogonal. The time-energy uncertainty principle

∆E∆t ≥ h (3.1)

is a suggestion of the elapsed time during evolution of a quantum system into an orthogonal state,
which would equally apply to a one-particle bit such as |0� → |1�. Margolus et al (1998 )present
a more robust version, considering not the standard deviation of energy but rather the average
bounded energy. Consider a quantum state

|ψ0� =
�

n

cn |En� (3.2)

which evolves by

|ψt� =
�

n

cne
−i

Ent
h̄ |En� . (3.3)

This is orthogonal to an initial state when

S(t) = �ψ0|ψt� =
�

n

|cn|2e−i
Ent
h̄ = 0. (3.4)

Using the inequality cosx ≥ 1 − 2
π
(x + sinx), Re(S) = 1 − 2E

πh̄
t + 2

π
Im(S), both Re(S) and Im(S)

must equal zero for S(t)=0, then

0 ≥ 1− 4Et

h
(3.5)

and thus

t =
h

4E
(3.6)

is the time required for the system to transition between orthogonal states.
The number of mutually orthogonal states that a computational system of average energy E

can transition through then defines its maximum processing rate. Margolous et al (1998) generalize
this result to a string of orthogonal states. Let

|ψ0� =
N−1�

n

1√
N

|n�1� , (3.7)

as if a 1-d harmonic oscillator where �1 = h

τ
and assume that the system passes through N states

over time τ , then τ⊥ = τ

N
. After m intervals of time, this state is

|ψm� =
N−1�

n

1√
N

e
− 2πinm

N |n�1� (3.8)
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then

�ψ0|H |ψ0� = �1

N−1�

n

n

N
= �1(

N − 1

2
) =

1

N
(
h

τ⊥
)(
N − 1

2
) (3.9)

and so the minimum transition time needed for a system to flip between N orthogonal states is

τ⊥ =
N − 1

N

h

2E
. (3.10)

The fundamental interpretation of this result is that processing speed of any computational model
is ultimately limited to energy.

While the result was derived by considering a system that transitions through a single state
at a time, the result is independent of architecture: a macroscopic system of particles will have the
same processing speed regardless of whether it was designed to process a single bit, or many, at a
time. The equal division of the system of energy E into any amount of subsystems for example will
still result in a computational model performing no greater than 2E/πh̄ operations per second.

3.2 Memory Limits

Shannon (1948) defined a new quantity known as ’information entropy’ which can be ap-
plied to quantify a bound on the memory capacity of a computational model. Shannon’s idea was
analogous to statistical mechanics describing information as a ’state’, quantifying the amount of
information gained from a single letter of the alphabet, for example. The information gained from
this letter flowing through a channel would be directly related to the amount of uncertainty in the
system. Brillouin (1956) applies this theory to show that the reduction of entropy in any system
corresponds to a gain of information:

I ≡ S0 − S1 = klog
W0

W1
, (3.11)

where W represents the number of micro states. Considering an ensemble of two state spins com-
prising the entirety of a computational model, the amount of information contained in bits (it’s
memory space) is

I =
S(E, V )

kBln2
(3.12)

where S is the Boltzmann entropy. Thus a system with finite memory I can process

kBln2E

πh̄S(E, V )
(3.13)

operations per bit·second.
Lloyd (2000) suggested that this limit should be refined using the canonical ensemble in

consideration of programming. As discussed in the previous section, a system’s processing speed is
fundamentally a limit of transitions between orthogonal states. Depending ultimately on average
energy E regardless of architecture, it seems logical to utilize the microcanonical ensemble. However,
a system will not necessarily require all of it’s memory depending on the computation at hand, even
causing suboptimal speed. Calculation of S should therefore be done using the canonical ensemble.
With this treatment, the ultimate processing speed becomes governed by temperature.

3.3 Maximum Memory Space

The maximum memory space is a bound dictated by entropy as shown in the previous
section. Clearly, as entropy is increased, more memory is available. Entropy itself has physical
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bounds. Bekenstein (1981) determined an approximation to the maximum entropy of a system
through a study of black hole thermodynamics. Just as Landauer’s law had spawned from a refute
of Maxwell’s paradox, Bekenstein sought to disprove ’Wheeler’s Demon’. Wheeler et al (1971)
questioned the applicability of thermodynamics to black holes pointing out that a ’classical’ black
hole (accepted to have zero temperature and thus zero entropy) consuming mass from its exterior
conflicted with the notion that the total entropy of the universe must increase. Bekenstein sought
to form a theory in which black holes would have a non-zero entropy and temperature, describable
entirely by observable quantities of mass, charge and angular momentum. Hawking (1971) calculated
the area of a black and found it to be analogous to entropy; the theorem was refined and the
Bekenstein-Hawking entropy was determined to be

SBH =
A

l
2
P

=
c
3
A

4Gh̄
(3.14)

where lP is the Planck length and A = 16π(GM/c
2)2 is the area derived from the event horizon and

mass of the black hole.
With a well defined value of a black hole’s entropy, Bekenstein calculated a maximum

entropy bound for a definite system. In a thought experiment, Bekenstein imagined lowering a
system with defined mass m and entropy S into a black hole of entropy Sb and mass M >> m. The
black hole entropy thus changes by

∆Sb = k((M +m)2 −M
2) ≈ 2Mmk (3.15)

where k = c
3

4Gh̄
16π(G/c

2)2. The second law implies that the sum of the entropy from the black hole
and the lowered system never decrease. This implies the inequality

∆Sb − S ≥ 0 (3.16)

which can be rewritten

S ≤ 4πrhmc
2

h̄
(3.17)

by substituting the well defined black hole radius rh = 2Gm

c2
and the rest energy E = mc

2 of the
lowered system. To eliminate the black hole from the bound requires further thought experiments.
Reducing the radius of the black hole so that it is large enough to still consume the system, 4rh → ξR

where the coefficients are absorbed in ξ. Different thought experiments yield slightly different results
for ξ, but Bekenstein himself calculates ξ = 2π and thus a system of energy E that can be contained
within a radius R has a maximal entropy limited by the ’Bekenstein bound’:

Smax ≤ 2πRE

h̄c
(3.18)

where E is the total energy. The maximum amount of information that a system can contain is as
(eq 3.13):

I =
2πRE

h̄ckBln2
. (3.19)

This result has meaning in many fields, such as an estimate for the computational capacity
of the universe by Lloyd (2002) or a suggestion by Lloyd (2000) that particle collisions could be
used to perform computations. The amount of information in bits required to perfectly simulate the
human brain or body could be derived simply by substitution of the energy E = mc

2 into (eq 3.19).

3.4 Compressing a computer
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Figure 3.1: Parallel vs Serial Architecture. Parti-
tioning E into subsystems results in a shorter tflip

It was discussed in section 3.1 that a
computer will have the same processing speed
whether it was designed to process single bits
at a time, or multiple ones simultaneously. As
the processing speed is bound strictly to the
energy E of the system, dividing the system
into subsystems would allow parallel architec-
tures to be implemented.

The number of operations per sec-
ond that can be processed on a single bit
was calculated by determining the minimum
time required to transition between orthogo-
nal states. Consider two separated particles
representing a single processor. As shown in
(fig 3.1), concentrating the energy into a min-
imal amount of processors causes the bit pro-
cessing time tflip (eq 3.6) to minimize. How-
ever, doing this would be redundant with-
out minimizing tcom, the time required for
signals to travel. Reducing tcom is a mat-
ter of compressing the bits together. Assum-
ing the bits communicate via electromagnetic
waves, compressing becomes detrimental at
high densities as the strong and weak inter-
action forces will eventually take precedence. Lloyd (2000) suggests that as the computer is com-
pressed past these scales, a treatment using theories of quantum gravity is needed. The operation
and specification of computational models at this point is unknown as the number of degrees of
freedom becomes a convoluted theory. However, as the computational model is compressed further,
the Schwarzchild radius for the system is reached and the computer becomes a black hole. The
computer then has the well defined maximum entropy calculated in section 3.3, tcom is minimized
and thus this computational model operates absolutely serial in nature.

Whether the a black hole computer would ever be possible is an open question. Before
the theory of Hawking radiation, a black hole was assumed to destroy all information contained in
it. Whether Hawking radiation contains any discernible information is unknown (Lloyd suggests
decoding it via string theory), but would be the only candidate for an output of such a computer.

If a much more parallel architecture is desired, the efficiency can be maximized by adjusting
density so that tcom ≈ tflip.

3.5 Error Rate Tolerance

The cooling of a computer is strictly a process of heat transfer through conduction or
radiation. The study of this is a useful endeavor to current energy-dissipative processors, and future
reversible computers.

Any computer is susceptible to errors; even with the computer isolated from the external
environment and interactions, there will always be noise introduced in the input of the computer;
instructions must be sent from the external environment which at some point will be interacting
with some other uncontrollable system. Such errors would require deletion, or rejection of the bits
out of the computer through radiation.

In order to maximize the erasure of errors out of the computer, it should be constructed in
a way that the errors are ejected at the blackbody temperature. Thus error rejection is limited to
the rate of energy flux. The Stefan-Boltzman law P

A
= σT

4 divided by the Landauer limit kBT ln2
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joules per bit gives the maximal error rejection rate

AσT
4

kBTEln2
(3.20)

bits per second, where A is the surface area of the computer, σ is the Stefan-Boltzmann constant,
TE is the temperature of the environment, and T is the temperature of the computer. A bound of
maximum error rejection naturally dictates a restraint on error rate; computational models must be
constructed to adhere to this bound, otherwise they would overheat and obliterate themselves.



11

4 Contemporary Applications

The previous chapters discussed the ultimate physical limits to computation. However,
such a study might be vain in today’s scope: obtaining the maximal processing speed bound would
require the conversion of mass into energy, and realizing the memory limits require complete control
of a model’s degrees of freedom. Landauer’s limit is a much more relevant bound and consideration
of it will be of utmost importance within the next few decades.

4.1 Reversible Computing

The use of physically reversible logic gates would greatly increase a processor’s energy
efficiency and minimize heat dissipation. Modern processors utilize transistor implementations of
Boolean logic gates. Because the Boolean functions utilized are irreversible, extraneous heat is
generated as each bit is processed through a likewise irreversible circuit. The voltage applied to each
of two inputs, A&B as seen in (fig 4.1), results in a single logic 0 or logic 1 output; the dumping of
the wires to ground through a resistance causing dissipation of energy.

CMOS gates are discussed here rather than other logic families because of their relevance
in contemporary computing; notably they are the computer industry’s choice for use in processors.

Figure 4.1: Truth Tables for Logic Gates

The logical processes of these gates,
with the exception of the NOT gate, is not
reversible; given a logic output of 0 or 1, it
is not possible to deduce the original logic
inputs of the gate that processed it. However
G De et al. Mey (2008) demonstrated that
CMOS family logic gates can be physically
reversible if operated abiabatically.

4.1.1 Adiabatic Logic Gates

G De Mey et al’s (2008) study of
the CMOS NOT showed that energy stored
in parasitic capacitances is what is dissipated
as heat in a CMOS logic circuit. In (fig 4.2),
applying no voltage at Vin represents a logic
input ’0’. Then, Vout = VBB and energy
1
2C2V

2
BB

is stored in C2. If voltage is then
applied at Vin to represent the logic input ’1’,
T2 will conduct instead of T1 and the energy
stored in the C2 will be dissipated as heat.
C1 will then charge and store energy 1

2C1V
2
BB

which is also also equal to the heat dissipated
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Figure 4.2: CMOS NOT gate

in T2. Therefore,
1

2
(C1 + C2)V

2
BB

(4.1)

is the amount of heat generated in a CMOS logic circuit changing from input 0 → 1 or 1 → 0.
Koller et al (1993) examined the possibilities of using adiabatic processes, namely adiabatic

charging, to greatly decrease the energy dissipated in logic circuits. Consider the circuit in (fig 4.3);
closing the switch and slowly increasing the voltage so that the charging time T >> RC, the
capacitor will hold charge Q = C/V but the current will be I = CV/T . Joule’s law then says that
the energy dissipated is

Q = I
2
RT = (

CV

T
)2RT. (4.2)

Compared to a quick discharging, slowly varying the power supply voltage (at a level above the
transistor threshold) will decrease energy dissipation by a factor of 2CR

T
per logic change. Increasing

T , the dissipated energy will approach zero.

Figure 4.3: Charging a load capacitance through a
switch

G De Mey et al (2008) applies a sim-
ilar argument to energy dissipation in CMOS
logic gates by studying the charging of a ca-
pacitance through a diode. The difference in
energy dissipation between operating a gate
irreversibly vs reversibly is found to differ by

∆Q = nkBT ln2, (4.3)

where n is the number of electrons compris-
ing the input. This result reaffirms an earlier
limit: the difference in energy dissipation is
simply Landauer’s limit times n.

Adiabatic operation of logic gates
greatly reduces heat dissipation in computing processes but at the obvious expense of speed. As adia-
batic operation requires T >> RC, this tradeoff will always remain true. Resistance and capacitance
RC of the circuitry and thus the required time T is reduced with scaling; it may be worthwhile to
implement adiabatic operation in certain applications should processing speed already be sufficient.

4.1.2 Reversible Logic

Bennett (1973) realized that logical reversibility could be used to perform computations
with no expense of energy dissipation. Contemporary logic gates are logically irreversible (with the
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exception of the NOT gate); comprising of two inputs yet only one output, their operation requires
that ’garbage’ bits are discarded through dissipation. Recognizing this flaw, Bennett conceived
reversible logic functions by stipulating that each primitive component of a computer have an equal
number of inputs to outputs. In this method, garbage bits do not require erasure but would instead
be reused to reverse the computation.

A schematic of a fully reversible computer is shown in (fig 4.4). Given a data input, the
logic units M will yield an answer which is copied. At this point, the garbage bits and the answer
are then processed through M−1, yielding the original input. Thus, no energy need be dissipated
by the computer.

4.2 The Very Next Steps

Figure 4.4: Zero Entropy Loss Reversible Computer

Landauer’s limit seems to be the
most forthcoming physical bound in com-
puter technology. G. De Mey et al (2008)
predicts that this theoretical limit will not be
reached until 2050. Until then, the gradual
improvement of semiconductor manufactur-
ing should sufficiently meet the needs of hu-
manity. Silicon devices still have much room
for innovation anyway. Intel’s 2011 debut of
consumer level 22 nm ”3-D Tri-Gate” CMOS
processors (touted as having 3-D, or verti-
cally standing transistors) hint that many ge-
ometrical improvements can still be made.
IBM is currently researching the possibility
of stacked silicon chips in which water flows
through 50-micron wide cooling structures
built into each layer; adiabatic operation of logic gates would additionally aid in circumventing
heat related issues.

When Landauer’s limit is finally reached, the only other option of increasing the perfor-
mance to density ratio of computers is to implement reversible computation. Quantum computation
is the most promising candidate of such, utilizing unitary operations to insure that the computations
are reversible (not to mention quantum computation is innately more powerful than classical com-
puting). Entirely new methods of computing are of huge research interests, such as the possibility of
using DNA (the replication of which is a reversible process) or the mechanisms of protein folding to
process information. Any sort of quantum or biological computer (a ’natural’ computer) would not
only be advantageous because of their reversibility but also because of other inherent features. For
example, the ability to generate truly random numbers (as cannot be performed by contemporary
computers) allows a natural computer to utilize much more powerful algorithms.
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5 Conclusion

The true significance of the analysis of ”information processing” or ”computational models”
is more qualitative than quantitative. Although the term ”information processing” invokes a notion
of human-made technology, in fact ”information processing” has occurred long before the advent of
mankind. The effect is reciprocal; man-made computers can be understood as fundamental processes
of nature in the same way nature can be envisioned as computers themselves.

It is shown that information is an intrinsically physical and quantifiable entity, the pro-
cessing of which must therefore adhere to physical law. Many speculations can then be made from
this perspective. For instance, it is shown in this paper that a computational model’s processing
speed is bound to energy, suggesting that computers will one day possess unfathomable capabilities.
Some use these theories to speculate on various biological phenomenon, such as the true processing
power of the human brain given its heat output. Yet some advocate an even more philosophical
perspective, like Hollis R. Johnson (Indiana University) and David H. Bailey (Lawrence Berkeley
National Lab) do in their paper Information Storage and the Omniscience of God (2003) in which
they analogize humans as computers, whose interactions with the universe are actually divine inputs
from an omnipresent being. Whether or not their hypothesis is true, their paper goes to show that
the study of information processing from a physics perspective is not useless; attempts to explain
the mysteries of the universe is always a worthwhile cause–a reflection of the spirit of physics in its
own way.
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