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Abstract

Atomic Interactions: Thermal, Magnetic and Transport Properties of Pd2TiInx

(0.87 ≤ x ≤ 1.22)

by

Jessica Missaghian

My work in a discovery driven research group led under the direction of Arthur P. Ramirez,

Andrew LaForge and Zack Schlesinger explores the fundamentals of magnetic materials.

Pd2TiIn a polycrystalline inter-metallic compound with a face-centered cubic Heusler L21

structure has prompted interest and discussion over the past 20 years for its bulk mag-

netic properties and disputed magnetically ordered state. Prompted by scientific interest

in weakly itinerant magnets and possible device applications motivated further research on

Pd2TiIn’s electronic structure as well as an investigation into the nature of Heusler type

alloys, magnetic order and the role of spin fluctuations. I present a comprehensive inves-

tigation into a series derived from Pd2TiInx, 0.87 ≤ x ≤ 1.22 by studying the magnetic,

transport and heat capacity properties in the range from 2 - 300K.
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1

Introduction

“All things are made of atoms - little particles that move around in perpetual

motion, attracting each other when they are a little distance apart, but repelling upon

being squeezed into one another.” As described by Richard Feynman the atomic postulate,

in his opinion, encompasses the most information about scientific knowledge to date. With

a little thinking and imagination astounding fundamental ideas can be extracted from that

one sentence. In fact, matter can be understood through development of this atomic theory.

The study of atoms, and therefore matter is a basis with which physicists have been able to

understand the world around us. Matter is all around us. We interact with matter everyday

using all of our senses. Amazingly though, matter is unfamiliar in many ways.

Materials have interested many peoples. Historically, ages of human existence have

been defined by materials. In the paleolithic age materials such as copper, bronze and steel

revolutionized lifestyles of tribes and hunter - gatherers. In more modern times prominent

materials such as plastics, ceramics, composites and superconductors have brought about a

new digital age. The 2010 Nobel Prize was given to two condensed matter physicists who
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were able to produce a novel material, a single layer of carbon, Graphene. These materials

have had a large impact on our understanding of matter and on the evolution of technology

and devices. The propulsion of interest in materials and their applications has created

an interdisciplinary field, Materials Physics, a discipline at the cross section of chemistry,

condensed matter and physics.

Greek philosophers of the 6th century B.C. first proposed the discontinuous nature

of matter. Our ideas on atoms and the components of matter have evolved with time.

The macroscopic properties of a material are understood through the small scale atomic

interactions. These atoms are in perpetual motion, varying in degree depending upon the

state of the material. In the gaseous state the atoms move at high velocities. They are

chaotic and occupy a large volume. In contrast, when a material is in its solid state the

atoms oscillate about a single point in a confined manner. In the solid state of matter the

atoms sit on well defined points creating patterns often referred to as the lattice. In most

materials the lattice exhibits symmetry and is a defining characteristic of the crystal. These

structures can take on many geometries and configurations. It is surprising to think that

most of the solids that we interact with on a day to day basis are actually crystals! In this

“solid” state of matter there is a plethora of exotic and interesting physics that has become

a hot field in the sciences.

For my senior thesis I will present a comprehensive research experiment on mea-

sured physical and magnetic properties of several metallic crystals. I will also give a review

of basic principles in solid state physics to help put my work into context.
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1.1 Models of Solid State Physics

By studying the periodic table one will notice that about 2
3 of the elements are metals.

The elements seem to favor the metallic state, characterized by the materials’ conductivity,

malleability and lustrous appearance. By studying metals we do not limit our understanding

of other materials [Ashcroft and Mermin, 1976]. Understanding metallic compounds gives

insight into other nonmetallic states.

In 1897 J. J. Thompson discovered the electron, and it was not until the early 20th

century that electrons were described by their particle-wave like nature. The cooperative

behavior of the electrons in matter are the way in which we understand solids [Gweon,

2010]. Solid State Physics deals with the microscopic interactions between a few electrons

and the macroscopic consequences of those interactions. So, in order to understand matter,

from a physics point of view, it necessary to apply theories from quantum mechanics for

the small scale phenomena and classical mechanics for the whole ensemble. To understand

the physical properties of the simplest metals we can apply a few simple models: the Free

Electron Theory Model and the Nearly Free Electron approximation. Both approximations

make unintuitive assumptions, but both predict accurate behavior for many materials.

1.1.1 The Free Electron Model

In the Free Electron Model the valence electrons, electrons in the outermost orbitals of

an atom, are given up to become conduction electrons. These itinerant electrons can be

thought of as nomads, in perpetual motion, drifting, so they no longer belong to any specific

atoms, and they are able to move freely throughout the material. In this model the electron-
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electron interactions due to the Coulombic force are neglected. This is not to say that the

Pauli Exclusion principle is not applied. Furthermore, the Coulomb interaction between

the electrons and the positive protons are neglected as well. So in the free Electron Model,

the electrons are free to move throughout the material subject to no Coulombic forces.

Drude proposed that the electrons in this model exhibit gas like behavior and therefore the

electron cloud is refereed to as a Fermi Gas of electrons [Ashcroft and Mermin, 1976]. The

assumption that the electrons are “free” is a complicated matter. As my solid state physics

professor once said, a free electron is similar to a free citizen “‘no man is an island”. So,

although this is a useful model, no electron is really free and other considerations must be

applied.

Solving the classic quantum mechanics problem of an electron confined to an in-

finite well we find that the electrons take on discretized energy levels. These energy levels

are dependent upon quantum numbers indicating the shell, orbital and spin state of the

electron. Free electrons in a solid fill up these energy levels maintaining two electrons per

orbital. In the ground state, or the electronic configuration at absolute zero, electrons fill

the lowest energy levels until all electrons are accommodated. The atomic orbitals are filled

accordingly until there is a boundary where occupied states are separated from unoccupied

states. The energy of the topmost filled level is defined as the Fermi Energy. In the Fermi

Gas approximation the Fermi surface at absolute zero in momentum space is a sphere. The

volume of the sphere encloses occupied states whose surface is the Fermi energy. At absolute

zero the electrons follow a Fermi-Dirac Distribution

f(ε) =
1

e
(ε−εF )

kBT + 1

(1.1)
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where kB is the Boltzman constant, T is temperature, ε is the energy and the

chemical potential µ is equal to the Fermi energy, εF at absolute zero. As the temperature

is increased, some energy levels which were vacant become filled. This eventually poses the

limit for this model. Since by this model all materials are characterized by this behavior

the model has no way of distinguishing between a metal and an insulator.

Heat Capacity

The first law of thermodynamics tells us that at either fixed pressure, or fixed volume a

change in heat will result in a change in temperature dependent upon the type of material.

The relationship between the change in heat and the change in temperature is given by the

extensive physical property, heat capacity. Heat capacity scales with the size of the sample.

Therefore, it is useful to work in terms of specific heat, heat capacity normalized by the

mass of the material. Specific heat is an intensive or intrinsic characteristic of the material.

Classically the energy, E, of an ideal gas is given by the equipartition theorem,

E =
3

2
kBT (1.2)

where kB is the fundamental Boltzmann constant. An elegant and simple expres-

sion for the heat capacity is derived from Equation 1.2. The Dulong - Petit Law for heat

capacity, C, says

C =
∂E

∂T
=

3

2
kB (1.3)

This expression does not hold for low temperature heat capacity, and at room

temperature the classical expression is a gross overestimation! The discovery of the Pauli
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Exclusion Principle and the Fermi Distribution function solved this problem Kittel [1995].

As a system’s temperature is increased from absolute zero, the electron’s energies do not

increase uniformly as ∼ kBT , rather only electrons within an energy range kBT of the Fermi

level are thermally excited. So, instead of all the electrons gaining energy, a fraction of the

electrons, on the order of T, can contribute to the electronic heat capacity [Gweon, 2010].

Therefore, the electronic heat capacity is given by

Celectronic =
1

3
π2D(εF )k2BT = γT (1.4)

where D(εF ) is the density of states at the Fermi energy and γ is the Sommerfeld

parameter. The specific heat parameter γ can tell us about the effective mass of the electrons

due to the interaction with the lattice, phonons and other electrons [Kittel, 1995]. Normal

metals have γ on the order of 1 mJ
moleK

2. Large gamma values are an indication of frequent

electron scattering and electron drag in the material. This is accounted for by an increase

in effective mass. Materials with γ on the order of 1000 mJ
moleK

2 are heavy fermion systems.

The valence electrons interact strongly so they cant move around as much, so the Coulomb

force becomes a much larger effect in these materials. For these materials the free electron

model does not hold, but we can consider the effective heavier quasiparticles as free.

The phonon contribution to heat capacity is explained by Debye’s T 3 law. Debye

considered the statistical mechanics of the acoustical phonons at low temperatures which

are universal among matter [Gweon, 2010]. Then the total heat capacity is given by

C = γT + βT 3 (1.5)

a the sum of the electron and phonon contributions.
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Resistivity

Current I flowing through a material is proportional to a voltage drop V along the material

by a factor R, this is Ohm’s Law and it is given by

V =
I

R
(1.6)

where R the resistance of the material. The resistance scales with the dimensions

of the sample, so a more meaningful property of a material is the resistivity. Resistivity is

how strongly a material opposes the flow of current. Resistivity is an intrinsic quantity, so

it is sample size independent. The resistivity in the free electron model is given by

ρ =
m

ne2τ
(1.7)

where m is the mass, ne is charge density and τ is the free time between collisions

during which the applied electric field acts on the electron. The resistance and resistivity

are related by

ρ = R
A

L
(1.8)

where A is the cross sectional area of the material and L is the length. The

electrical resistivity of most metals at room temperature is dominated by collisions of the

conduction electrons with phonons. At temperatures close to absolute zero resistivity shows

collisions with impurity atoms and mechanical imperfections in the lattice.
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1.1.2 The Nearly Free Electron Model

The Free Electron Model’s inability to distinguish metals from insulators led to the devel-

opment of the Nearly Free Electron model. The distinguishing property of a solid is the

electron’s response to an applied electric field [Ashcroft and Mermin, 1976]. In the Nearly

Free Electron Approximation, or Fermi Liquid approximation the periodic potentials of the

ions are taken into account, but electron-electron interactions are still neglected. This ap-

proximation works because of the screening effect of inner orbital electrons and because of

the Landau liquid Fermi theory [Gweon, 2010]. The theory states that the electrons be-

come more “free” as the inter-atomic distance between atoms is lowered. This unintuitive

results, is a consequence of the r−2 dependence of the coulomb potential which allows for

the Coulomb potential to grow faster than the electrons potential energy.

The interaction of the conduction electron waves with the positive ionic cores forms

continuous bands of allowed energies for the electrons. Generally, by Bloch’s theorem the

electronic energy levels in a solid form continuous bands of energy separated by gaps of

forbidden energies, band gaps, corresponding to potential barriers [Ashcroft and Mermin,

1976].

Within the Nearly Free Electron model an insulator is defined as a material whose

bands are either completely full or empty, and a metal is defined as a material that has

one or more bands partially filled [Kittel, 1995]. Metals have no large gaps in the spectrum

of allowed energies. This is why metals are such good conductors! In a typical metal the

band is usually only partially filled up to the Fermi level. So, in order to excite an electron

to a higher energy level requires little energy because there is no gap to overcome. Below

the Fermi energy the electrons are bound to their parent atoms and the electrons are said
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to contain energies in the valence band, when excited above the Fermi energy the electrons

become unbound from the atom’s nucleus and become a part of the conduction band. An

example of the band configuration for metals and insulators can be found in Figure 1.1.

Figure 1.1: Band configuration for (a) insulators, (b) metals or semi metals and (c) metals.
The gray regions are occupied states. [Kittel, 1995]

The electrical properties of a metal are determined by the volume and the shape

of the Fermi surface. In this model current is due to changes in occupancy of the states near

the Fermi Surface [Kittel, 1995]. The Brillouin Zone is an essential part of studying the

electronic band structure of crystals. The Brillouin zone in reciprocal lattice space defines a

primitive cell. Generally, the Fermi surface intersects the zone boundaries perpendicularly

and the volume enclosed is dependent only on the electron concentration [Kittel, 1995]. The

electronic interaction with the periodic potentials affects the Fermi surface in a few ways:

the interaction creates energy gaps at the zone boundaries and the crystal potential rounds

out the surface. As the crystal potential is considered the energy band of the free elections

becomes narrow (the itinerant view). The other view is the localized view where each

valence electron belongs to its local environment whether an atom, ion or molecule. The

potentials make local states unstable, so the electrons can hop from ion to ion, exploring

the crystal. Here the energy available to the electrons becomes wide. The two views come
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from Bloch’s theorem and are equivalent within band theory they become distinguished

when electron-electron interactions are considered [Gweon, 2010].

So far both models neglected the forces between the electrons. It is when there

are strong electron-electron interactions that the interesting, exotic behavior of the metals

are exhibited, such as superconductivity and magnetism.

1.2 Models of Solid State Magnetism

Contrary to classical studies magnetism is a purely quantum mechanical effect. It is both a

mysterious and robust phenomena that to this day is not fully understood. Applications of

magnetism are both interesting and useful. Examples include your computer’s hard drive,

electric motors and even the core of many musical devices.

Magnetism as a macroscopic phenomena is attributed to nearest neighbor interac-

tions on the atomic scale. A simple two particle interaction is the key ingredient to account

for large scale, observed magnetic states. Magnetism is due to the magnetic moments µ

of electrons given in units of Bohr Magnetons µB. The magnetic moment arises from an

electron’s angular momentum, its change in angular momentum in an applied field and its

its total spin. The magnetization of a material M is defined as the magnetic moment per

unit volume.

M = nµ (1.9)

where n is the number of magnetic moments. An important dimensionless quantity,

magnetic susceptibility χ, is given by the change in the magnetization with respect to an

applied field,
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χ =
∂M

∂H
(1.10)

where χ is given in CGS units and H is the applied field.

Amazingly, although magnetic moments are a quantum mechanical property they

have macroscopic consequences of many different types. Magnetism can be described by:

Paramagnetism, Diamagnetism, Ferromagnetism and Antiferromagnetism.

1.2.1 Paramagnetism and Diamagnetism

Materials with a positive magnetic susceptibility or positive χ given by Equation 1.10 and

that only exhibit magnetism in the presence of an applied magnetic field, are said to be

paramagnetic. For noninteracting atomic ions with partially filled outer shells we have the

Curie’s Law for paramagnetic susceptibility,

χ =
C

T
(1.11)

where C is the Curie constant. This law is derived from a thermodynamical

approach to the Hamiltonian of a collection of individual ions with no interactions, H =

−µ ·H [Gweon, 2010]. Curie’s Law says that at low temperatures entropy can not disrupt

the spins, so spins will be aligned to the applied magnetic field, maximizing the total spin

and lowering the energy of the system. As long as a magnetic field is applied at T = 0 all the

magnetic moments will be aligned. As the temperature increases, entropy dominates and

the spins will fluctuate causing spin disorder. The system enters a state of equal probability

for the spins to be either up or down. Accordingly, the system will exhibit no detectable

magnetic moment.



12

Curie’s law applies to a localized view of the electrons. It explains the magnetism

of transition metal ions and rare earth ions in the presence of a magnetic field. These

elements tend to have valence electrons in the d and f shells, and the paramagnetic behavior

is associated with the presence of those electrons. The magnetic moments in the ground

state help explain the experimentally observed magnetization of these ions.

The ground state of an atom can be characterized by the total spin S, total orbital

angular momentum L and total angular momentum J . These values can be calculated using

Hund’s rules. Hund’s rules says when the d or f shell orbitals are partially filled the system

will tend to maximize the total spin S. Similarly the system will try to maximize the total

orbital angular momentum L. Finally, the J is given by the sum of L and S if shell is more

than half full and by the difference if the shell is less than half full.

The first rule Hund’s Rule is a consequence of a key force in magnetism, the

exchange interaction. The exchange interaction arises from the Pauli exclusion principle,

which says that electrons must satisfy a spatial symmetrization requirement dependent

upon the spin of the electron because electrons can not occupy the same quantum state.

Either the spin or spatial component of an electron’s wavefunction must be antisymmetric.

Depending on the spin state of the electrons the system will have a higher or lower Coulomb

interaction. For example, if we have a symmetric spin state, both electrons have spin 1
2 ,

then the spatial state must be antisymmetric, so the electrons are farther apart. This spatial

separation results in the lowering of the Coulomb potential. According to the first Hund’s

rule the spin is maximized, so the electrons are in the same spin state, therefore they are

farther apart and the ystem will have a lower coulomb interaction. Accordingly this state is

energetically favorable. Therefore, in the localized view magnetism for the transition metal
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and rare earth ions is attributed to the unpaired electrons of the d and f shells electrons

that like to form high spin states because the exchange interaction makes this energetically

favorable state.

The localized view of an electron in matter is inadequate in describing the metallic

magnetism of the transition metals, the most common materials had no theory properly

explaining their properties! A more accurate description takes into account the mobility

of the outer orbital electrons. These conduction electrons are partially free and should

be treated a free electron gas. These electrons do not occupy energy levels dependent on

orbital angular momentum. Furthermore, the orbital angular momentum is quenched by

the crystal field, so the total magnetic moment is completely accounted for by the spin.

Itinerant electrons in this Fermi gas approximation give rise to a weak magnetism called

Pauli Paramagnetism.

A generic metal described by a Fermi gas in its ground state in the presence of an

applied magnetic field in the direction to quantize spin will result in a magnetic interaction

between the field and the spin of the electron. If the electron spin is aligned with magnetic

field we will have a lower energy state, and if the spin is in the anti-parallel configuration

we will have a higher energy state. This is reflected in two shifts in the energy bands, one

associated with the spin up and another with the spin down band. The shift is quite small,

±µBB on the order of a meV, whereas, Fermi energies are typically 1 eV. In this model

the Fermi level does not shift, consequently one band will have more occupied states. The

difference in the number of electrons in the bands results in the Pauli susceptibility. Where

the susceptibility χ0 is
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χ0 = µB
2D(εF ) (1.12)

proportional to the density of states on the Fermi surface D(εF ) and Bohr Magne-

ton µB. This is common to the coefficient of specific heat γ, and it will become important

in the results section when these values are calculated directly for the Pd2TiInx samples.

So, whereas localized strong magnets can align all spins because they are inde-

pendent, itinerant electrons exhibit s weak paramagnetic effect because only pockets of

electrons can be high spin. Pauli Paramagnetism does not depend on effective mass or

band structure. Pauli Paramagnetism is purely a density of states effect at the Fermi level.

[Schlesinger, 2010]

Pauli Paramagnetism is often enhanced when electron - electron interactions, band

effects and diamagnetism of the ionic cores are taken into consideration. Diamagnetism is

usually associated with nonmagnetic systems. As a magnetic field is applied electrons tend

to create current opposing the flux change, an effect known classically as Lens law. Diamag-

netism is defined as having negative magnetic susceptibility values. The enhancement of

the paramagnetism is dicussed in the next section under the heading Stoner Enhancement.

1.2.2 Ferromagnetism and Antiferromagnetism

Ferromagnetism is a very strong and probably the most colloquially familiar type of mag-

netism. For example, iron, a classic magnet, has a large magnetic moment, and we can

observe this kind of magnetism in everyday objects such as the magnets on our refrigera-

tors. Ferromagnetic interactions occur without the help of an applied magnetic field. The

system spontaneously forms long range order of the magnetic moments. Internal interac-
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tions, the exchange field, line up the magnetic moments. This exchange field is higher than

any field scientists can create by a few orders of magnitude. Thermal agitation can destroy

the spin order, so one could try heating up a permanent magnetic at home to see at what

temperature it loses its magnetization! The temperature at which this spontaneous magne-

tization is destroyed is known as the Curie temperature, TC above which a paramagnetic

phase dominates. The susceptibility of a ferromagnet is given by the Curie-Weiss law

χ =
C

T − TC
(1.13)

where at T = TC the susceptibility diverges, and above Tc we have paramagnetic

behavior. Recalling Equation 1.10 we see that Equation 1.13 gives finite magnetization for

zero applied field. As long as the temperature is below TC the spins will align by double

exchange. In a ferromagnetic state the electron can not hop to another atom because of

Pauli exclusion principle. Therefore, a ferromagnet has no higher energy state.

Antiferromagnets have a net magnetization due to oppositely magnetized lattices.

Here the spins are ordered in an antiparallel arrangement with zero net moment, below

TC . At the critical temperature the susceptibility of an antiferromagnet is not infinite

like the ferromagnetic case, but there is a weak cusp in the susceptibility as a function of

temperature. The spins do not cancel each other out completely, so a net magnetization is

observed. Antiferromagnetism is a special case of a ferrimagnet where the two sublattices

have equal magnitude in the magnetization.

Examples of antiferromagnetics include Mott Insulators. A Mott insulator is col-

lection of atoms in the limit of a large lattice constant, or large coulomb interaction. In

Mott insulators two electrons occupying the same site is very energetically unfavorable, so
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each site is occupied by one electron in the ground state. The true ground state has one

spin flip this is the antiferromagnetic state. In the macroscopic view there is no magnetic

order. In the higher energy state the electron hops or tunnels to a neighboring site. Such

a state is very energetically unfavorable, and only possible for an antiferromagnet.

1.2.3 Stoner Enhancement and Spin Fluctuations

The itinerant treatment of Pauli Paramagnetism later evolved into the Stoner Model. In

the Stoner Model the electrons are not localized, but are free to move within the periodic

potentials of the atoms. Three postulates of the Stoner model state that the magnetic

carries are the spins in the d band and that Fermi statistics must be obeyed [Fay and

Appel, 1979]. It is a successful model at absolute zero, but not an accurate description at

finite temperatures. The theory applies quite well to very weak itinerant systems, but it

fails to predict the paramagnetic state above TC where local moments still exist despite the

breakdown in long range order. The pitfalls of the Stoner model were resolved by Moriya

who suggested a collective excitation, multiple spin excitation, rather than a single particle

excitation.

In the Pauli Susceptibility case there is a split in energy bands, for the up and

down spins. If electron - electron interactions are introduced, this time the Fermi level will

be shifted, exaggerating the occupancy discrepancy between the bands. There will be a

preponderance in one band, and the band with more electrons is favored because it lowers

the interaction energy.

In Stoner enhancement electron-electron interaction are reminiscent of ferromag-

netism, where electron-electron interactions create spontaneous magnetism. In between
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ferromagnetism and a normal metal with no interactions there is a whole range of enhance-

ments of χ. The system tries to find a configuration in between ferromagnetism and Pauli

paramagnetism. Spin fluctuation theory for itinerant electrons helps us to understand a

broad range of magnetic materials.

1.3 Heusler Alloys and Pd2TiInx

Heusler alloys have been studied for over a century. In 1903 Heusler found that the alloy

Cu2AlMn orders ferromagetically even though its constituent elements exhibit paramag-

netic or diamagnetic behavior [Heusler et al., 1903]. This remarkable result was the first

in a series of Heusler alloys. Since then Heusler alloys have been reported with group III,

IV and V substitutions. One such polycrystalline intermetallic, Pd2TiIn, crystallizes in

a Heusler L21 structure. Whose elements Palladium and Titanium exhibit paramagnetic

behavior and Indium exhibits diamagnetic behavior.

The L21 Heusler Alloy is a compound composed of three metallic elements with a

2:1:1 ratio. The elements crystallize in a face-centered cubic lattice as illustrated in Figure

1.2. There has been a general interest in both the Heusler structure and the half Heusler

structure for some time. Many topological insulators, a hot topic in current condensed

matter physics, are found to crystallize in the half-Heusler structure. Heusler alloys have

also been used as a tool to study transition metal magnetism.
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Figure 1.2: The Heusler L21 structure the Palladium atoms sit on the X sites, and the
Y and Z sites are occupied by Titanium and Indium respectively. Image source: http :
//en.wikipedia.org/wiki/Heusleralloy

There has been significant discussion over the type of magnetically ordered state

exhibited by Pd2TiIn. Neumann et al. [1993] report that Pd2TiIn orders below 110K

with a static susceptibility below that temperature and a localized paramagnetic moment,

µp = 4µB. This is a relatively high transition temperature as compared with other weak

itinerant magnets. Powder neutron diffraction measurements reported by Ouladdiaf et al.

[1994] indicate a first order structural transition at 92K with no long-range magnetic order

below 92K. They propose the existence of a ferrimagnetic state. Jezierski et al. [1995]

confirmed that Pd2TiIn is not ferromagnetic, but the antiferromagnetic state was not

studied.

My work seeks to improve the scientific understanding of magnetism and atomic

interactions in a series of polycrystalline samples derived from the inter-metallic compound

Pd2TiInx. The focus of this experiment was on how Indium doping effects the magnetic

ordering of the Heusler alloy. In the indium-doped alloys, some percentage of the titanium
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or palladium were substituted for by indium ions when the crystals were grown. Therefore

some percentage of the lattice sites normally occupied by the palladium or indium atoms

are instead occupied by an indium ion. Our measurements of the magnetic susceptibility,

resistivity and heat capacity give insight into the band structure and magnetic ordering.
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2

Experiment

By performing a series of temperature dependent measurements on the physical

and magnetic properties we identified key features and characteristics of the samples as

well as the relationship to Indium content. Resistivity, magnetic susceptibility and low

temperature heat capacity were measured as a function of temperatures from 2 - 300K,

using two sophisticated measurement systems described in the sections below.

2.1 Pd2TiInx Samples

Six polycrystalline Pd2TiInx samples with Indium concentrations 0.87 ≤ x ≤ 1.22 were

prepared by Callie Oglesby. The buttons were arc welded on a copper hearth using high

purity powders in an argon atmosphere. X-ray diffraction measurements on the samples

performed by Theo Seigrest confirmed the Heusler L21 structure at each composition a table

of the lattice parameters at each composition is given in Table 2.1. The distance between

the Ti atoms in a Heusler structure is given by a√
2
.
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x a

0.87 6.38984 ±0.0116

0.93 6.39601 ±0.0116

1 6.39877 ±0.0116

1.12 6.40433 ±0.0116

1.17 6.4136 ±0.0116

1.22 6.40774 ±0.0116

Table 2.1: The lattice parameter a given in units of Åas a function of indium doping x

Heat capacity and resistance measurements were made using the Physical Prop-

erties Measurement System (PPMS) manufactured by Quantum Design. AC Susceptibility

measurements were made on a Magnetic Properties Measurement System (MMPS) again

manufactured by QD. Measurements were taken at temperatures between 2 - 300K with an

applied magnetic field.

2.2 Magnetic Properties Measurement System (MPMS)

The MPMS measures the voltage induced as the sample traverses the sample chamber.

As the sample moves up the lowest coil its magnetic moment induces a positive voltage,

as it moves through the center coils wound in the opposite direction a negative voltage is

induced finally as it passes through the top coil a positive voltage is induced. The sample

then moves down the chamber and the process is repeated.

Magnetization measurements were performed using the Magnetic Properties Mea-

surement System (MPMS) magnetometer manufactured by Quantum Design. The MPMS

is a variable temperature, sensitive magnetic moment detection system. It is computer

controlled and allows for real time viewing of the data. Large magnetic fields, ±7Tesla,
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are produced by the Superconducting Quantum Interference Device (SQUID). The SQUID

can then detect changes in the field which are 14 orders of magnitude smaller [McElfresh,

1994]. A schematic illustration of the MPMS can be found in Figure 2.1. The SQUID is

immersed in a vessel of liquid helium and surrounded by a vacuum. It can achieve temper-

atures as low as 1.9K. The detection coil is thermal isolated from the sample chamber to

allow the chamber temperature to be varied. The coil is immersed in a helium bath outside

the sample chamber, and detect the magnetic moment of the sample as it moves up and

down the sample chamber. A measurement is performed by stepping the sample through

the detection coils. The detection coil is a second order gradiometer composed of a single

superconducting wire wound in a set of three coils. The samples magnetic moment induces a

current in the coil. A current to voltage converter produces an output voltage proportional

to the magnetic moment which in turn determines the materials magnetization and then

magnetic susceptibility. A fixed DC field is applied as the sample is moved into the detection

coils region of sensitivity. They have a homogeneous superconducting magnet to create a

very uniform field over the entire sample measuring region and the superconducting pickup

loops. The magnet induces a moment allowing a measurement of magnetic susceptibility.

The detection coil geometry determines what mathematical algorithm is used to calculate

the net magnetization. The induced current is independent of the rate of flux change al-

lowing for slow sample movements through the chamber. As the sample passes through a

coil, it changes the flux in that coil by an amount proportional to the magnetic moment of

the sample. The peak-to-peak signal from a complete cycle is thus proportional to twice

the moment. The coils are wound in a way which strongly rejects interference from nearby

magnetic sources and lets the MPMS function without a superconducting shield around the
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pickup coils.

For materials that might not be characterized as magnetic applying a field can

reveal information about electronic structure, interactions between neighboring molecules

or the character of a transition between phases of the material. If the sample doesnt have

a permanent magnetic moment, a DC field is applied to induce one.

The measurement procedure involves mounting a sample to the end of a rigid rod

that is inserted into the sample chamber. The chamber is air-locked and a vacuum is pulled

to within a few torr. The sample is then driven up and down the squid detection coils in

discrete steps to generate a change a flux. Several reading of the SQUID voltage are taken

and then averaged by the equipment’s software.

The magnetic moment calibration for the SQUID is determined by measuring a

palladium standard over a range of magnetic fields and then by adjusting to obtain the

correct moment for the standard. The palladium standard samples are effectively point

sources with an accuracy of approximately 0.1% [Design, 2004].
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Figure 2.1: A schematic diagram of the Magnetic Properties Measurement System. [Author,
2011]

Magnetic Susceptibility Measurements

Materials with a low magnetic susceptibility where chose to mount the samples. This is

done to keep the contribution to the background signal at a minimum. The samples are

enclosed within a gelatin pill capsule and secured with cotton to minimize torquing in the

magnetic field. The pill capsule is held inside of an ordinary plastic drinking straw and

cross threaded into place using fishing line as shown in Figure 2.2. The straw, cotton and

pill capsule are lightweight and perform well over a large temperature range. The samples

weighed approximately 20 - 100 mg and the geometric arrangement of the samples was not

critical as they were polycrystalline.
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To ensure that all coils sense the magnetic moment of the sample we perform a

centering scan that ensures th sample is centered in the SQUID pickup coils. If the sample

is not centered, the coils read only part of the magnetic moment. During a centering scan

the MPMS scans the entire length of the samples vertical travel path. The sample moves

upward, carrying the sample through the pickup coils, then the MPMS brigs the sample

down through the coils. While the sample moves through the coils, the MPMS measures

the SQUIDs response to the magnetic moment of the sample and saves all the data from

the centering measurement. The voltage readings are plotted as a function of position, and

examined to determine whether the sample is centered in the SQUID pickup coils. The

sample is centered when the part of the large, middle curve is within 5cm of the half-way

point of the scan length McElfresh [1994].

Cross-threaded Fishing 
Line

Sample Spacer Sample Rod

Pill Capsule

Figure 2.2: A schematic diagram of a sample mounted for measurement in the MPMS.

2.3 Physical Properties Measurement System (PPMS)

Resistivity and heat capacity measurements were performed using the Physical Properties

Measurement System (PPMS) manufactured by Quantum Design. The PPMS is a liquid
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helium cooled, temperature and field variable system capable of doing a number of thermal

and electrical measurements. The system can generate magnetic fields between ±7 Tesla

and temperatures between 1.9 and 400K. It is computer controlled and data can be viewed

via a computer in real-time. The PPMS is composed of a standard dewar with a liquid

helium bath in which a probe is immersed. The probe is capable of temperature control

and is composed of a superconducting magnet, a sample puck connector and electrical

connections. The sample chamber is inside a vacuum tube base has 12-pin connector that

connects to sample puck. a vacuum pump continuosly pumps sample chamber.

Resistance Measurements

Samples were cut into long thin rectangular bars for a standard four wire DC resistance

measurement They were cut using a diamond impregnated wire saw. The samples were

then polished using fine sand paper and four silver epoxy contacts were baked on the

samples, a pair of contacts at the ends of the bar (see Figure 2.3). The silver epoxy created

electrical contact with gold wires that attached to leads on a sample puck that connected

to pins of the PPMS probe. The sample puck is a copper, gold-plated disk with a 2.3 cm

diameter. Thermometers and heaters are directly below the sample puck when it is installed

in the sample chamber. One puck can accommodate 3 samples. Each lead and sample was

electrically, but not thermally isolated using ordinary cigarette paper. Current was fed

through two electrical leads placed at the very ends of the sample and the two inner leads

measured the potential drop across the sample. The input impedance of the the voltmeter

used allowed for a high degree of accuracy for the resistance value measured [Design, 2000].

Proper Electrical connections were verified using a digital voltmeter before the sample was



27

installed into the chamber. Once the puck was installed the sample chamber was purged

and sealed and resistivity measurements were taken at 0 Tesla and at an applied field of 7

Tesla over the temperature range from 2 K - 300 K. Using the geometry of the samples the

data were further processed to obtain resistivity values as discussed in the Results.

Figure 2.3: A schematic diagram of a four wire resistance measurement with the sample
mounted on a PPMS sample puck electrically isolated with cigarette paper.

Heat Capacity Measurements

Heat capacity at low temperatures, well below the DeBye Temperature, directly probes the

electronic and magnetic energy levels. The PPMS measures heat capacity using the two tau

model and relaxation method. The heat capacity option measures heat capacity at constant

pressure by applying a known amount of heat for a fixed time followed by a cooling period

of the same amount of time. After each heating and cooling cycle, the system takes one

measurement. The relaxation technique fits the temperature response of the platform and

accounts for the thermal relaxation of the platform to the bath and the relaxation between

the platform and the sample. An addenda measurement is taken of the sample puck and

a small amount of grease. The PPMS automatically subtracts the addenda measurement

from a heat capacity measurement leaving you with the heat capacity of the sample. The

PPMS Heat capacity option uses a different puck that requires the sample to have thermal

contact to a platform placed in a copper heat bath. The platform has four wires connected

to a thermometer and a heat source to measure heat capacity. Because the sample expands
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and contracts it is important to have very good coupling with the sapphire platform. This is

achieved by polishing our samples so they have a flat surface and ensuring contact with the

platform using Apezion grease. The puck has a thermal radiation shield, and a turbo pump

is used to pull a sufficient vacuum about 1 mtorr. A charcoal holder is used as a cryopump in

the vicinity of the sample to ensure that the local pressure is low. Poor thermal coupling to

the platform is indicated by the PPMS as a sample coupling percentage. Samples with data

coupled less than 90% were always remounted and remeasured to maintain good quality

data.
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3

Results

3.1 Magnetic Susceptibility

The data are outputted by the MPMS in the form of a table consisting of the applied

magnetic field, temperature of the sample, and the measured magnetic moment. A section

of the datasheet for Pd2TiIn is shown in Table 3.1.
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Field (Oe) Temperature (K) Long Moment (emu)

5000 2.2 0.00110

5000 2.49 0.00109

5000 2.8 0.00108

5000 3.1 0.00107

5000 3.4 0.00107

5000 3.7 0.00107

5000 3.99 0.00106

5000 4.29 0.00106

5000 4.6 0.00106

5000 4.9 0.00106

5000 5.2 0.00105

5000 5.5 0.00105

5000 5.8 0.00105

5000 6.1 0.00105

5000 6.4 0.00105

5000 6.7 0.00104

5000 7 0.00104

5000 7.3 0.00104

5000 7.6 0.00104

5000 7.9 0.00104

5000 8.2 0.00104

5000 8.5 0.00104

5000 8.8 0.00104

5000 9.1 0.00104

5000 9.4 0.00104

5000 9.71 0.00103

5000 10 0.00103

5000 10.01 0.00104

Table 3.1: Example of the MPMS output data for Pd2TiIn in the range of 2.2 - 10K

To calculate the magnetic susceptibility of the sample we use a modified version

of Equation 1.10. Scaling the magnetic moment by the sample mass and molar mass. Then

we divide the magnetization by the applied field to obtain

χ =
M

H

mmolar

m
(3.1)
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where m is the mass of the sample and mmolar is the molar mass. The susceptibility

is the plotted per mole of Palladium and as a function of temperature. The susceptibility

data for the stoichiometric sample Pd2TiIn in a temperature range of 2 - 300K with an

applied field of 0.5 Tesla is shown in Figure 3.1.
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Figure 3.1: Magnetic Susceptibility data of Pd2TiIn in a temperature range of 2 - 300K
with an applied field of 0.5 Tesla.

At low temperatures the magnetic susceptibility of the series begins to diverge

following curie susceptibility behavior Equation 1.11. This behavior is attributed to the

magnetic impurities found in the sample. We fit the data to the Curie susceptibility and

remove the inverse T contribution. If the whole tail is due to a single spin 1
2 on a Palladium

site randomly oriented due to defects, it is less than 1% per mole Palladium. Once the Curie
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Tail due to magnetic purities are removed the true physics of the samples can be identified.

The corrected susceptibility is then plotted as a function of temperature as shown in Figure

3.2. This procedure is done for each sample in the series. A plot of the susceptibilities for

all the samples is shown in Figure 3.3.

0 50 100 150 200 250 300
0.00028

0.00030

0.00032

Pd
2
TiIn

H = 0.5 Tesla

 

 

χ 
(e

m
u/

m
ol

e)

Temperature (K)

Figure 3.2: Magnetic Susceptibility data of Pd2TiIn in a temperature range of 2 - 300K
with an applied field of 0.5 Tesla with the Curie susceptibility subtracted out.
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Figure 3.3: Magnetic Susceptibility data of Pd2TiInx series in a temperature range of 2 -
300K with an applied field of 0.5 Tesla with the Curie susceptibility subtracted out.

There was some oxygen contamination in a few samples characterized by a sharp

peak at 43K, the temperature at which molecular oxygen undergoes an antiferromagnetic

transition [Design, 2011]. We repeated the measurements ensuring that all the faulty seals

were replaced and that the sample were properly outgassing during the airlock process. For

this reason one data point from Pd2TiIn0.87 is missing.

3.2 Heat Capacity

The PPMS outputs heat capacity data in the form of a table consisting of the sample

temperature, sample heat capacity, sample heat capacity divided by temperature and tem-
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perature squared. A section of a datasheet measuring Pd2TiIn is shown in Table 3.2.

Temperature (K) CP ( mJ
moleKPd) Temperature2 (K2) CP

T ( mJ
moleK2Pd

)

3.49 9.95 12.17 13896.63

3.49 9.97 12.18 13909.91

3.49 9.98 12.19 13913.68

3.21 8.44 10.33 12783.01

3.22 8.47 10.34 12827.94

3.22 8.44 10.35 12771.98

2.96 7.2 8.74 11857.99

2.96 7.19 8.74 11847.59

2.96 7.19 8.76 11835.08

2.72 6.21 7.41 11102.77

2.72 6.2 7.42 11080.55

2.73 6.22 7.43 11112.29

2.51 5.41 6.28 10521.1

2.51 5.42 6.28 10528.61

2.51 5.42 6.29 10527.52

2.31 4.83 5.32 10195.65

2.31 4.77 5.32 10082.28

2.31 4.78 5.32 10084.31

2.12 4.14 4.49 9508.24

2.12 4.14 4.5 9510.2

2.12 4.13 4.5 9488.45

Table 3.2: Example of the PPMS datasheet for Pd2TiIn for the Heat Capacity Experiment

To calculate the specific heat of the sample we multiply the sample heat capacity

by the molar mass, mmolar, and divide by the sample mass, m.

The specific heat was then plotted as a function of temperature for the stoichio-

metric sample as shown in Figure 3.4.
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Figure 3.4: Heat Capacity data for Pd2TiIn in a temperature range of 2 - 50K.

Experimentalists often find it convenient to write Equation 1.5 as

C

T
= γ + βT 2 (3.2)

this is done because the data points lie on a straight line with slope β and y -

intercept γ as shown for Pd2TiIn in Figure 3.5. This procedure was done for each sample

in the series. A plot of the specific heat for all the samples is shown in Figure 3.6.
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Figure 3.5: Heat Capacity data for Pd2TiIn as a function of T 2. The inset shows the low
temperature linear behavior electronic contribution to the heat capacity.
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Figure 3.6: Heat Capacity data of the series Pd2TiInx as a function of T 2. The inset shows
the low temperature linear electronic contribution to the heat capacity.

3.3 Resistance

The PPMS outputs resistance data in the form of a table consisting of the sample tempera-

ture and sample resistance. The samples were measured with an applied field did not differ

from that with an applied field in a temperature range of 2K - 300K. Only data without an

applied field are presented. A section of a datasheet is shown in Table 3.3.
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Temperature(K) Field (Oe) Resistance (Ω)

10.04 0.09 0.01833

11.46 0.09 0.01832

12.92 0.09 0.01833

14.37 0.09 0.01833

15.83 0.09 0.01834

17.29 0.09 0.01836

18.75 0.09 0.01836

20.2 0.09 0.01836

21.66 0.09 0.01835

23.12 0.09 0.01836

24.58 0.09 0.01837

26.03 0.09 0.01837

27.49 0.09 0.01837

28.95 0.09 0.01837

30.41 0.09 0.01838

31.87 0.09 0.01837

33.32 0.09 0.01836

34.78 0.09 0.01837

36.23 0.09 0.01836

37.69 0.09 0.01836

39.15 0.09 0.01836

40.6 0.09 0.01836

Table 3.3: Example of the PPMS output data for Pd2TiIn for the Resistivity Experiment

To calculate the resistivity of the sample the dimensions of the sample were mea-

sured and Equation 1.8 used. The resistivity was then plotted as a function of temperature

for the stoichiometric sample as shown in Figure 3.7.
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Figure 3.7: Resistivity data for Pd2TiIn in a temperature range of 2 - 300K

The resistivity was then plotted as a function of temperature for all the samples

as shown in Figure 3.8.
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Figure 3.8: Resistivity data for the Pd2TiInx series in a temperature range of 2 - 300K
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4

Analysis and Conclusions

The data from the results were analyzed used fitting functions to extract useful

parameters. The procedure, fitting functions and parameter significances are discussed

below.

4.1 Magnetic Susceptibility

The low temperature susceptibility approached a constant value χ0 as the temperature de-

creased toward 0K. χ0 was extracted by a fitting function using OriginLabs 6.1 to determine

the Pauli Paramagnetism as shown in Figure 4.1. The values for χ0 at each composition

are plotted as a function of indium content in Figure 4.5.
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Figure 4.1: Fitted Magnetic Susceptibility Data for Pd2TiIn

4.2 Heat Capacity

The electronic contribution to the heat capacity is deduced by plotting the data, as in

Equation 3.5 and extrapolating the data linearly below ∼ 5K to the y-intercept, as shown

in Figure 4.2. The linear fit of the data yields a γ value as discussed in the Introduction.

The values for γ at each composition are plotted as a function of indium content in Figure

4.5.
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Figure 4.2: Low temperature electronic Heat Capacity for Pd2TiIn. The red line is a linear
fit extrapolated to the y-axis to deduce γ.

4.3 Resistivity

The resistivity curves were all fit to a function of the form

ρ = ρ0 + ρ1T +Ae−
T−TC

2ω

2

(4.1)

where ρ0 is the residual resistivity, ρ1 is the linear contribution to the resistivity

and TC the transition temperature. The residual resistivity ρ0 is the extrapolated resistivity

at absolute zero. The resistivity data and fitting functions are plotted in Figure 4.3. The

stoichiometric and low doped samples are plotted separately in Figure 4.4 to highlight
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the presence of the Gaussian peaks by normalizing the data and the extracting just the

peak from the data. The resistivity curves (Figure 3.8) show an overall linear increase in

resistivity with temperature, and the curves also show a pronounced Gaussian peak in the

stoichiometric and under-doped samples data at low temperatures. The values for ρ0, ρ1,

and TC at each composition are plotted as a function of indium content in Figure 4.5.
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Figure 4.3: Resistivity data fit for the entire Pd2TiIn series.
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Figure 4.4: Resistivity Gaussian Peaks extracted from data, normalized and fit for the
Pd2TiIn lower doped samples. The inset shows the critical temperature as a function of
Indium content.

4.4 Parameters and Wilson’s Ratio

The parameters χ0, ρ0, ρ1 and γ for the Pd2TiInx series are plotted as a function of indium

content in Figure 4.5.
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Figure 4.5: Fit Parameters for the Pd2TiIn Series as a function of Indium for the resistivity,
magnetic susceptibility and heat capacity data.

χ0 has a strong dependence on the Indium content. As a function of indium content

the Pauli susceptibility increases linearly. There are a few outliers that can be attributed to

samples with impurities or without long range crystallinity. The stoichiometric and lower

doped samples show an increase in transition temperature with doping, and verified that the

higher doped samples do not exhibit the Gaussian term. The Resistivity drops significantly

for th doped series indicating that the stoichiometric crystal has a structure and electrical
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interaction that impedes flow.

The large Pauli Susceptibility and the large gamma quantity for the stoichiometric

Pd2TiIn motivated the calculation of the Wilson Ratio for the entire series. Wilson’s ratio

has proved to be useful in characterizing strongly correlated Fermi liquids McKenzie [1999].

The Wilson Ratio, R, relates χ0 and γ and is defined as the dimensionless ratio

R =
4π2k2Bχ0

3(gµB)2γ
(4.2)

where g is the gyro-magnetic ratio in the absence of interactions [McKenzie, 1999].

A table of the Wilson’s Ratio for each sample in the series can be found in Table 4.1 where

Equation 4.2 reduces to R = 0.73 χ0

γ with g = 2 and the units used as shown in the table.

The Wilson’s Ratio grows linearly with Indium content as plotted in Figure 4.6.

Compound γ (mJ/(K2 mol Pd)) χ0 (10−5 emu/mol Pd) R

Pd2TiIn 6.7 31.0 3.38

Pd2TiIn0.87 4.66 12.0 1.88

Pd2TiIn0.93 5.3 23.0 3.17

Pd2TiIn1.12 5.91 33.0 4.08

Pd2TiIn1.17 5.49 58.0 7.71

Pd2TiIn1.22 5.63 46.0 5.97

Table 4.1: Wilson’s Ratio R calculated from measurements of the χ0 and γ using the units
used here and g = 2 Equation 4.2 becomes R = 0.73χ0

γ
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Figure 4.6: Wilson Ratio, Gamma and Chi plotted for the Pd2TiInx series as a function of
indium content.

4.5 Conclusions

In a Fermi gas the low temperature specific heat coefficient γ and χ0 scale linearly with

the density of states at the Fermi level. So, for a typical Fermi gas, where electron-electron

interactions are negligible, Wilson’s Ratio is 1. For the Pd2TiInx series there is an obvious

growth of the Wilson’s Ratio with Indium content. The Wilson’s Ratio is greater than 1,
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so this is a clear indication that the density of states at the Fermi level is enhanced with

Stoner Enhancement for the magnetic state of the system. Gamma changes from from 4.6

- 6 this is a 50 -40% change across the whole range. Whereas, χ0 changes by a lot more.

These changes are reflected in the Wilson’s Ratio. Enhancement of the magnetization in

this material is a consequence of structure of the constituent elements. There is not just a

Density of State effect, but also a Stoner enhancement at the Fermi level. If the Wilson’s

Ratio is changing we have to have a stoner enhancement developing across the whole series.

Furthermore, the Gaussian peaks in resistivity for the lower doped samples indicate an

increase in the transition temperature with the Wilson’s ratio. The resistivity data are also

flat and high indicating that these samples can be bad metals.

Our samples were not multiply annealed this may have affected the long range

crystallinity. This may be why our magnetic susceptibility data did not have peaks as pro-

nounced as data reported from other sources. The lack of long range crystallinity does not

affect microscopic energetics that are important for establishing Fermi levels. A later study

would anneal the samples further to find correlation of long range order with fundamental

short range properties.
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