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Abstract

The Distribution of Coalescing Compact Binaries:

implications for gravitational-wave observations

by

Luke Zoltan Kelley

Merging compact binaries are the most viable and best studied candidates for gravitational wave

(GW) detection by the fully operational network of ground-based observatories. In anticipation of

the first detections, the expected distribution of GW sources in the local universe is of considerable

interest. Here we investigate the full phase space distribution of coalescing compact binaries at z = 0

using dark matter simulations of structure formation. The fact that these binary systems acquire

large barycentric velocities at birth (“kicks”) results in merger site distributions that are more

diffusively distributed with respect to their putative hosts, with mergers occurring out to distances

of a few Mpc from the host halo. Redshift estimates based solely on the nearest galaxy in projection

can, as a result, be inaccurate. On the other hand, large offsets from the host galaxy could aid the

detection of faint optical counterparts. The degree of isotropy in the projected sky distributions of

GW sources is found to be augmented with increasing kick velocity and to be severely enhanced

if progenitor systems possess large kicks inferred from the known population of pulsars and double

compact binaries. Even in the absence of observed electromagnetic counterparts, the differences in

sky distributions with varying kick velocity could be readily discernible by GW observatories within

the expected accuracies and detection rates of advanced LIGO.
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Overview

While light is massless, its trajectory is gravitationally altered by massive bodies. In 1915,

Einstein showed that gravity can be described as the bending of space-time around objects—which,

while cliché, can be thought of as a taught sheet bending under the weight of a bowling ball (for

example). Thus, while light would move on a straight path across a smooth sheet, it appears to

bend around this distorted version. One of the necessary repercussions of this interpretation, is that

massive bodies moving sufficiently violently will cause waves of gravity (or sheet-bends—as per the

analogy) to emanate outwards carrying energy with them as “gravitational radiation”.

Binary star systems represent the first identified and best understood source of gravitational

waves (GW). The stronger the gravity, and the faster the oscillations of the stars, the stronger

those waves will be—and thus the more easily they can be detected. Understandably then, the

first observation of gravitational waves was via a double pulsar system, in which two neutron stars

of masses 1.44M⊙
1 and 1.39M⊙, orbiting each-other at a distance of less than 3R⊙ (Weisberg &

Taylor, 2005). These close, dense stars produce gravitational waves which carry enough energy

away that the effects on the orbit are measurable as a gradual decay of the orbital period. This

indirect measurement of GW earned the discoverers—Hulse and Taylor, after which the system is

named—the nobel prize in physics, 1993.

Recently, the first gravitational wave observatories (GWOs)2 have come online, and the

first direct detection events are expected in the next few years. These instruments, such as Virgo (in
1
For a list of common units used in the course of this paper, see §A.1.

2
For a list of common initialisms, see §A.2.
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Italy) and the two Laser Interferometer Gravitational-wave Observatories (LIGO, both in America),

attempt to measure the oscillation of physical distance as waves pass through the detector. Unique

GW signals are expected from stellar pulsations, planetary orbits, and even the big-bang itself; but

only the final seconds of double compact object (DCO, or simply, ‘compact binary’) inspirals are

expected to have signals strong enough to observe in the near future. No detections have been made

thus far; and LIGO-Virgo are currently undergoing upgrades (to the “advanced” stage) expected to

be completed by 2015.

The upgraded detectors will be able to detect GWs with lower amplitude, and thus inspirals

at larger distances. The distribution and expected merger rate of DCO systems—composed of two

neutron stars (NS-NS; or double neutron stars—DNS), two black-holes (BH-BH; or DBH) or one

of each (NS-BH)—have been thoroughly studied over the past three decades, yet uncertainties still

span numerous orders of magnitude (e.g., Sadowski et al., 2008; Kim et al., 2005; Fryer et al., 1999;

Phinney, 1991; Narayan et al., 1991). None the less, it is clear that these events are exceedingly

rare, and thus the event rate is a limiting factor in GW detection. With this in mind, advanced

detectors will not only be more likely to detect a GW event at a given distance, they will also probe

a significantly larger volume—where there is a much greater chance of an inspiral occurring.

Out of the three types of DCO systems, DNS coalescences are expected to lead the merger

rate by at least an order of magnitude, as their constituents are formed from lower mass stars, and

thus a far larger population than the high mass stars which form black-holes. NS-NS coalescences

are predicted to occur at a rate of ∼ 13 Mpc−3Myr−1, while an optimistic estimate of the distance at

which these signals could be detected—the so-called, ‘detector horizon’—should be about 400 Mpc

for advanced LIGO-Virgo (Abadie et al., 2010). Higher-mass DBH systems, with smaller inspiral

separations, could be detected at even larger distances.

The spatial and temporal distribution of mergers is far more complex than the distribution

of stars in general. Our understanding of the formation of neutron stars and black-holes alone
3
0.01-10 Mpc

−3
Myr

−1
at 95% confidence bounds
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are imperfect; our knowledge of the pathways by which binary systems form is thus even more

tenuous. Still, many of these systems have been observed. Additionally the length of time between

binary formation and binary merger (referred to as the system’s ‘lifetime’) can vary significantly,

and the overall distribution of lifetimes (i.e. the distribution of initial DCO binary parameters;

see §2.1) remains uncertain. Despite the uncertainties, it is known that these systems have large

systemic velocities—-up to hundreds of kilometers per second. These velocities have the potential

to significantly alter the distribution of these objects in the universe. One of the primary focuses

of this study is to explore and quantify the effects of high systemic velocities on the distribution of

DCOs.

Single neutron stars are observed to have even larger velocities, up to thousands of kilo-

meters per second. Even slight anisotropies in the formation of NSs can lead to these large “kick-

velocities”. A one percent anisotropy in a 1051 erg supernova, for example, would deliver a kick

of about 600 km s−1 to a 1.4M⊙ NS remnant. Fryer et al. (1998) matches the observed proper

motions of pulsars, double neutron star systems and x-ray binaries to reach a mean velocity of

∼ 400 − 500 km s−1. More recently, Hobbs et al. (2005) fits a larger catalogue of pulsar proper

motion measurements to a maxwellian distribution with a mean velocity of 400 km s−1. With

merger-times after formation frequently on the order of a Hubble time, the distance these objects

travel before coalescence can reach megaparsecs. Thus, a priori, we would not expect the distribution

of merger events (and therein gravitational wave sources) to trace the distribution of stars.

Analyses to date have examined the effects of kick-velocity on the distribution of DCOs

using static, model galactic potentials (e.g., Bloom et al., 1999). Zemp et al. (2009) was the first

study to employ fully dynamic, cosmologically evolving halo potentials. Here, we expand on those

studies to examine in detail the full three dimensional distribution of compact binaries in dynamic

environments as a function of natal kick-velocity. In our simulations, we have selected a local-like

universe in particular, to investigate the effects of high progenitor speeds on future GW detections.

Our results suggest that with a moderate number of detections, the distribution of mergers could
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be statistically constrained and thus also the underlying velocity distribution.

In addition to better understanding the physics of compact binaries, the distributions

explored here are of great relevance to the GW community. From a theoretical perspective, if the

distribution of compact binaries becomes so extended that their merger will occur outside of the

light distribution of its host galaxy, and thus there will be a much larger chance of observing an

electromagnetic counterpart to the GW signal. Observationally, the expected distribution of these

objects must be taken into consideration when these counterparts are searched for. In the moments

after a GW detection event, the source location will be poorly constrained. If the DCO distribution

is found to trace the distribution of stars, telescopes should be pointed towards the galaxy nearest

to the predicted source location. Alternately, if the distribution is extended, telescopes should be

pointed to the highest probability location, irrespective of its environment.

The outline of this paper is as follows: in §3.1 we describe the cosmological simulations

used and the selection criteria for a local universe analog. In §4 we present the distribution of

compact binaries in three kick velocity scenarios, and in §5 we examine detection requirements to

distinguish between them experimentally. We show that with sufficient detections and accuracies,

the effects of varying kick velocity are readily apparent. Finally, in §6 we discuss our results and

their ramifications as–well as mention the prospects of future work. In the appendix are tables of

Common Parameters (§A.1), Common Initialisms (§A.2), a section on Orbits (§A.3), and finally a

concise, peer-reviewed publication of the work here described (§A.4).



6

1 Compact Binaries as Gravitational

Wave Sources

One of the strongest confirmations of Einstein’s theory of General Relativity was the dis-

covery of PSR B1913+16 by Hulse and Taylor in 1974 (Hulse & Taylor, 1974, 1975). This system

consists of a pulsar and a companion neutron star, both of mass ∼ 1.4 M⊙
1, with an orbital period

of τ = 0.323 days (Weisberg & Taylor, 2005). The rapid spatial changes in the mass distributions of

tight Double Compact Objects (DCOs) such as these, bend spacetime to such a degree that waves

emanate out to infinity. These Gravitational Waves (GW) carry with them a significant amount of

energy taken away from the stars’ orbital energy, thus decreasing their orbital separation. Figure 1.1

compares the expected and observed period of PSR B1913+16 as a function of time as the orbit

tightens.

The formalism of GW emission (derived in §2.1) illustrates that the rate of energy emission

is strongly dependent on the orbital separation. If we take Eq. 2.18 (derived in §2.1) as given, we

can express the lifetime of the binary system—i.e. the time before merger τmerge—as a function of

the initial period τ .

τmerge ≈ 5× 1010 yr
�

τ

day

� 8
3

�
µ

M⊙

�−1 �
M

M⊙

�− 2
3

(1− e
2)

7
2 (1.1)

After inserting an appropriate reduced mass2 µ = 0.7, and total mass M = 2.8M⊙, for a double NS
1
According to Weisberg and Taylor, the masses are so well determined–now after 30 years of observation–that if

expressed in grams, the uncertainty would be comparable to that of Newton’s gravitational constant itself.
2
Defined in §A.3
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system, we find for the initial orbital period:

τ ≈ 0.5 days
�

τmerge

10 Gyr

� 3
8

(1.2)

Thus, for enough energy to be dissipated such that the stars merge within the age of the universe—

that is, a Hubble time (τh = 13.7 Gyr)—the initial orbital period must be on the order of a day,

corresponding to an orbital separation of d ≈ 4 × 109 m ≈ 6 R⊙. PSR 1913+16, for example, will

merge in τmerge ≈ 300 Myr� τh.

Figure 1.1: PSR 1913+16: Showing the Orbital Decay Due to Gravitational Wave Emission–
reproduced from Weisberg & Taylor (2005). The accurate agreement between observations (points)
and General Relativistic predictions (solid line) is clearly apparent. Note: the prediction has not
been fitted to the data points. This system has an orbital-period decay of Ṗ = −2.42× 10−12 s s−1,
and will merge well within a Hubble time.
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There are many expected sources of gravitational radiation. Among them are asymmetric

stellar oscillations3 (for a review, see: Andersson, 2003) and rotations (e.g. Horowitz, 2010), super-

novae (e.g. Fryer et al., 2004; Ott et al., 2004), cosmic strings (e.g. Damour & Vilenkin, 2001; Ölmez

et al., 2010), and even inflation and phase-changes associated with the big bang (e.g. Smith et al.,

2006; Grojean & Servant, 2007). The final merger of two, solar-mass, neutron stars (NSs) or black-

holes (BHs), referred to here as double compact objects, are believed to be the best candidates for

the first, and the majority of, detectable signals for many reasons. The first gravitational wave de-

tections are expected to be at very low signal-to-noise ratios, and thus highly periodic signals can be

more easily deconvolved from background noise than transient events like supernovae. At the same

time, periodic sources like stellar oscillations, planetary systems, or binaries of main-sequence stars

(or even white-dwarfs) would produce much lower magnitude GW signals due to their weaker, and

more diffuse gravitational fields, and slower rates of oscillation. Finally, binaries of super-massive

black-holes at the center of merging galaxies may meet the aforementioned criteria, but their inspiral

signals will be of lower frequency than that of LIGO-Virgo’s sensitivity band (see Fig. 2.3).

It has long been known that a large portion of stars exist in binary systems4, however much

less is known about DCOs as only a hand-full of such objects (all DNS systems) have been observed

(see Table 1.1). More than half of these objects have sufficiently close orbits (i.e. periods τ < 0.5

days) to merge within a Hubble time—often referred to as ‘coalescing’ compact binaries. The orbital

separation of such systems is significantly smaller than the radii of their progenitors; begging the

question of how they were able to form, evolve and survive into such exotic configurations.

1.1 Formation Pathways

Stars with initial masses greater than ∼ 10M⊙ proceed through thermonuclear evolution

until iron-peak metals with optimally stable nuclei are produced, at which time they are prone
3
While strong enough signals from our own sun are unlikely, they are not excluded by current observations (e.g.

Cutler & Lindblom, 1996).
4
A classic paper by Duquennoy & Mayor (1991) argues for a binary fraction near 2/3 for massive main-sequence

stars, while more recent studies including lower mass stars suggest the fraction could be more like 1/3 (Lada, 2006).
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DNS Name Distance (pc) Period (days) Reference

PSR J1518+4904 700 8.63 Nice et al. (1996)

PSR J1811-1736 6000 18.78 Lyne et al. (2000)

PSR J1829+2456 1200 1.18 Champion et al. (2004)

PSR B1913+16 12001 0.323 Hulse & Taylor (1975)

PSR B1534+12 500 0.421 Wolszczan (1991)

PSR J1756-2251 2500 0.320 Faulkner et al. (2005)

PSR J0737-3039 500 0.1 McLaughlin (2003)

PSR B2127+11C 9700 0.3352 Wolszczan et al. (1989)

PSR J1906+07463 5400 0.166 Lorimer et al. (2006)

Table 1.1: List of Known Double Neutron Star (DNS) Systems. Binaries with orbital periods of
less than half a day will merge within a Hubble time, due to the emission of gravitational radiation.
During the final seconds of coalescence, gravitational wave emission is expected to be at detectable
levels.

to instabilities leading to gravitational collapse via supernova (SN) explosion (Heger et al., 2003;

Postnov & Yungelson, 2006). The resulting neutron stars are prevented from further collapse by

neutron degeneracy pressure. If, however, the initial mass of the star exceeds ∼ 25 − 30 M⊙,

degeneracy pressure is insufficient to prevent its complete collapse into a black-hole5.

Binaries with two of these highly compact remnants can form via numerous pathways—the

most significant of which are outlined below in Table 1.2, and described in detail by Fryer et al.

(1999). In each case, two supernovae must occur; and further, to achieve the observed small orbital

separations, the systems must generally pass through a common envelope (CE; see §1.2 and references

therein) phase in which one star is engulfed by the expanding envelope of the other. Viscous forces

and dynamical friction dissipate orbital energy, and with it the orbital separation (e.g. Portegies

Zwart & Yungelson, 1998; Fryer et al., 1999).

5
For a more comprehensive review of the outcomes of massive-star evolution, see Heger et al. (2003).
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Type # Description

DNS

1 Primary of massive binary evolves off the main-sequence, overfills its Roche-lobe

and transfers mass to the secondary. The primary explodes leaving a NS remnant.

As the secondary evolves, its envelope engulfs the primary—the two undergo CE

evolution. The orbit tightens, and the CE is ejected leaving a NS He-star binary.

He-star supernovas resulting in a DNS system.

2 Initially like ‘1’ above, except the CE phase precedes both supernovae. Two He-

stars share an envelope, tightening the orbit. The CE is ejected leaving a double

He-star binary. Two consecutive SNe yield a DNS system.

BH-NS

3 Initially as in ‘1’, the primary star transfers mass to the secondary until it explodes,

in this case collapsing into a BH. The BH enters a CE with the secondary, after

CE ejection a second SN produces a NS and a tight BH-NS system.

4 Initially as ‘1’, except the accreting NS—while in the CE—collapses into a BH,

with the explosion ejecting the envelope. The He-star evolves into a NS, resulting

in a BH-NS binary.

DBH

5 The same as ‘3’ except the second SN results in a BH, leaving a BH pair.

6 The same as ‘4’ except the second SN results in a BH, leaving a BH pair.

7 Nonconservative mass transfer between two initially very massive stars tightens the

orbit, followed by two consecutive supernovae, each yielding a BH remnant.

8 Dynamic formation In the dense cores of globular clusters (GC), either via tidal

capture or three-body interactions. While dynamic formation of DNS systems is

certainly possible, it is not expected to contribute as significantly to the overall

population.

Table 1.2: Double Compact Object Formation Pathways. In each of the above pathways (except
#8), a binary system of two massive stars with orbital separations less than a few AU evolves into a
binary with orbital separation d � 0.5 R⊙, composed of two compact objects—double neutron stars
(DNS), double black-holes (DBH), or one of each (BH-NS).
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Figure 1.2: Characteristic Double Com-
pact Object (DCO) Formation Pathway
via Common Envelope (CE) Evolution–
modified from Ramirez-Ruiz & Lee
(2009). Starting with a massive binary
star system, the common envelope de-
creases the orbital separation and two
supernovae yield a coalescing compact
binary.

The typical formation pathway is outlined as #1

in Table 1.2, and illustrated in Fig. 1.2. Starting with

a binary of two massive stars with an initial orbital sep-

arations on the order of an astronomical unit (AU), the

primary (more massive star) evolves off of the main se-

quence and overfills its Roche-lobe—transferring mass to

the secondary. Typically (as in routes: 1,3-6), the pri-

mary then explodes leaving a remnant NS (1, 4) or BH

(3,5-6). As the secondary evolves, its expanding hydrogen

envelope encompasses the compact primary in a common

envelope (discussed further in §1.2). In route #2, the

CE phase precedes the first supernova and contains two

He-cores instead of a He-core and remnant. It is possible

that a NS, rapidly accreting in a common envelope, would

exceed the Tolman-Oppenheimer-Volkoff limit (Tolman,

1939; Oppenheimer & Volkoff, 1939) and collapse into a

BH (4,6). During the CE phase which tightens the orbit

by about two orders of magnitude, the envelope is ejected,

leaving a tight He-star–BH/NS binary. A second super-

nova (or both supernovae in path #2) occurs in which the

He-star collapses into a NS (1-4) or BH (5,6). Thus, path-

ways 1-6 proceed through a common envelope to yield a

tight double compact object.

Results by Belczynski et al. (2007) suggest that

formation of DBH systems through CE could be rare, as

they may tend to merge completely. If this is the case, an
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alternate formation scenario (route #7) may dominate their formation. In this case, non-conservative

mass transfer between two very massive stars tightens the orbit sufficiently (e.g. Belczynski et al.,

2007), and two SNe each yield a black-hole. This pathway would be negligible if the stars survived

common envelope evolution.

Finally, dynamic formation is possible in the dense cores of globular clusters in which stellar

encounters are more common. Especially in the case of NS–giant close encounters, a subsequent CE

phase could be likely for newly bound systems (e.g. Davies et al., 1992). Tidal capture and three

body interactions (e.g. Lee et al., 2010; Banerjee et al., 2010) would favor the highest mass stars and

thus DBH systems. Data from the distribution of Low-Mass X-ray Binaries and High-Mass X-ray

Binaries suggest that while dynamic formation of tight binaries does occur, its contribution to the

overall population may be small (see Iben & Livio, 1993).

1.2 Common Envelope Evolution

Double compact binaries hold dichotomous traits: they are of interest due to their incredibly

close orbits; yet, individually, their progenitors must necessarily have been orders of magnitude larger

in size. The resolution to this evolutionary puzzle was first suggested by Paczynski (1976), in the

context of Cataclysmic Variable formation, and Ostriker (1975), for NS-containing binaries. These

authors were aware that contact binary systems (e.g. W Ursae Majoris binaries), are a further

entangled version of the established mass transferring systems, like cataclysmic variables and high-

mass X-ray binaries. They reasoned that systems could be formed by stars coupled further still—such

that one star is entirely engulfed by the envelope of the other. These common envelope situations are

fundamentally unstable with lifetimes less than thousands of years, thus differing from dynamically

stable contact binaries with lifetimes of millions or more years. In this section we review the basic

features of CE evolution as it pertains to double compact objects. For a more comprehensive review,

see Taam & Sandquist (2000) and Taam & Ricker (2010).

The high mass stars (� 5 M⊙) which form NSs and BHs will naturally evolve off of the



13

main sequence (MS) upon cessation of hydrogen burning, expanding into (super)giants over a thermal

(Kelvin-Helmholtz) timescale. These giants reach radii of up to tens of AU (hundreds of R⊙), thus

any massive binary with an initial period of less than about 10 yrs can enter a CE phase. Onset of

tidal evolution is further aided by tidal effects between the primary’s envelope and the secondary,

which will tend to spin-up the giant envelope at the expense of orbital angular momentum. Especially

for higher mass ratios and initially smaller orbital separations, tidal instabilities alone will pull the

secondary into the primary’s envelope (Counselman, 1973; Meyer & Meyer-Hofmeister, 1979). Once

the giant’s surface exceeds the inner Lagrangian point, and thus the Roche lobe, mass transfer

begins. For smaller mass ratios, and in general whenever the thermal timescale of the accretor is

significantly longer than the mass-transfer timescale (Iben & Livio, 1993), the secondary will be

unable to accrete the mass being transferred, and a common envelope will form around the system

(Taam & Sandquist, 2000).

After the secondary fully enters the CE, rapid in-spiral begins. The orbital velocity is

generally supersonic and thus a conical shock forms around the secondary. Accretion is hydrody-

namically limited, and significant drag results from the bow-shock and gravitational wake (Bondi &

Hoyle, 1944). Additionally, once the stellar cores near, spiral-shocks extend throughout the envelope

better facilitating transfer of angular momentum from the orbit to spin of the common envelope.

Fig. 1.3 shows density contours in the orbital and perpendicular planes of CE evolution at numerous

times. The spiral shock structure can be seen between 2610 and 3814 days in the orbital plane. The

CE phase is also very effective at transferring energy from the orbit into the envelope, decreasing its

binding energy, and inflating the envelope—as seen along the perpendicular plane. Overall the CE

phase lasts � 1000 yrs, and decreases the orbital separation by a factor ∼ 100 (e.g. Terman et al.,

1995). The evolution of the orbital separation in a characteristic situaton is illustrated in Fig. 1.4.

In general, systems with more evolved giants experience more rapid in-spirals, as a larger fraction

of their mass is in the outer layers of the envelope.

In the case of a NS in a common envelope with a (near) main-sequence star, the binding
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Figure 1.3: Hydrodynamic Simulations of Common Envelope Evolution—Reproduced from Taam
& Sandquist (2000). Hydrodynamic simulations of a 1.4 M⊙ neutron star in a CE with a 20 M⊙
red supergiant are illustrated with density contours along the orbital (left panels) and perpendicular
(right panels) planes. Snapshots are labeled by days after onset, at 2610, 3392, 3814, and 4655 days.
The spiral shock structure, and orbital separation decrease are clearly apparent.

energy of the envelope would be too great to be ejected by the orbital energy. In this situation,

in-spiral would most likely continue to coalescence. This may also be the case for less evolved

(yellow/blue) and lower-mass (red) giants, as the envelopes mass is too centrally condensed; and

additionally for initially short-period systems (� 100 days) like some high-mass X-Ray binaries

(Taam & Sandquist, 2000). In the case of core-merger, the formation of a Thorne-Zytkow object is

possible—resembling a red supergiant with a neutron-degenerate core (Thorne & Zytkow, 1975, 1977;

Taam & Sandquist, 2000). Stability of such a system would require Eddington-limited accretion to

avoid the neutron star’s collapse into a black-hole, disrupting the envelope. Chevalier (1993) and

Brown (1995) suggest that NS accretion, even in the CE phase, may not be limited to the Eddington

rate as accretion flow temperatures could be sufficient for neutrino dominated cooling, leading to

significantly super-Eddington accretion (e.g. Zel’Dovich et al., 1972)—and thus potential collapse

to a BH. This may be avoided however if the angular momentum of the inflowing material limits

accretion (Chevalier, 1996).

Once the NS reaches the high-density region near the giant’s core (i.e. within a few solar
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Figure 1.4: Evolution of Energy Deposition into the Envelope (left panel) and Orbital Separation
(right panel) During Common Envelope Phase—Reproduced from Terman et al. (1995). These
results, from the CE of a NS and red supergiant, illustrate the rapid decrease of orbital separation
on timescales ∼ 1000 yrs. Once the NS and supergiant-core are within a few solar radii, the local
material is cleared out—slowing the rate of inspiral. At the same time (∼ 900 days), rapid energy
deposition into the now corotating local envelope accelerates the rate at which material is ejected
from the system.

radii), the major phase of mass loss begins. Once the cores are this close, a local region of the

envelope within a few orbital separations is spun-up to co-rotation, while the outer layers of the

binary remain asynchronous increasing energy deposition and mass-loss. This is apparent near 900

days in Fig. 1.4, where the change in orbital separation levels off, and energy deposition into the CE

rises dramatically. The energy input from the cores can reach ∼ 1040 ergs s−1 producing mass loss

rates of ∼ 1M⊙ yr−1 (Taam & Sandquist, 2000). The efficiency with which orbital energy ejects the

envelope is measured by a parameter αCE , such that

αCE ≡
Ebind

∆Eorb

≈ af

a
0
f

(1.3)

where Ebind is the binding energy of the envelope, Eorb is the change in energy of the orbit; and af

and a
0
f are the actual and ideal (100% efficiency) final separations respectively (e.g. Livio & Soker,

1988). Thus αCE describes how effectively the orbit is tightened, and must be sufficiently large to

prevent in-spiral, but small enough to explain the observed separations of DCO systems. General

expectations are αCE ≈ 10 − 50% (Livio & Soker, 1988; Terman et al., 1995; Taam & Sandquist,
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2000; Taam & Ricker, 2010; Zorotovic et al., 2010), depending on the masses and evolutionary states

of the stars.

In general, efficient energy transport leads to decreases in the CE ejection efficiency as

energy transported to the surface is radiated away. Other sources of energy deposition could play

a roll in bolstering αCE . For example, enhanced nuclear shell burning or recombination energy in

the ionization zones of the envelope (see: Iben & Livio, 1993). Nuclear energy may be insignificant

over the short time scales of mass-ejection however, and recombination would most likely only assist

in the ejection of the outer most layers of the envelope—instead of towards the center where most

of the mass resides, and the most energy is required (see Sandquist et al., 2000). There is some

evidence to support occasionally high values of αCE , possibly even greater than unity (Kalogera,

1999).

1.3 Supernova Kicks

Two supernovae are required to yield each double compact object, regardless of the specific

formation pathway. Each of these supernovae typically releases between 1049 – 1050 ergs of energy.

Even slight anisotropies in these explosions can bestow huge recoil velocities to the resulting stellar

remnant. It comes as no surprise then, that significant evidence exists for the presence of large (in

some cases ≥ 1000 km s−1) velocities in the neutron-star population. The existence of these ‘Natal

Kicks’ has been established by NS–supernova remnant associations (e.g. Camilo et al., 2009), proper

motion surveys (e.g. Lyne et al., 1982), and the orbital parameters of X-Ray binaries (e.g. Fryer

et al., 1998).

Consider the guitar nebula (B2224+65, Cordes et al., 1993), depicted in Fig. 1.5. The

velocity of this NS can be constrained by association with the nebula, the angle of the bow-shock,

and even the change in position over years of observation. These measurements constrain the pulsar’s

velocity to � 800 km s−1. The strongest body of evidence, however, comes from evolutionary studies

of DCOs. Hansen & Phinney (1997) compared the (then known) sample of pulsar proper motions
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2001

1994

Figure 1.5: Hα images of the Guitar Nebula–reproduced from Chatterjee & Cordes (2004). The NS
is located at the very tip of the shock in each image. This wide-field image was obtained from the
5m Hale Telescope at Palomar, while the high-resolution insets of the boxed region were taken with
HST in 1994 (right) and 2001(left). This radio pulsar is traveling at ∼ 800− 1600 km s−1.

to simulations; their best fit distribution was Maxwellian, with a mean of ∼ 250− 300 km s−1, and

dispersion σv = 190 km s−1. Fryer et al. (1998) performed a similar analysis, with the addition of X-

ray binaries and DNS systems to the sample space; they found a mean velocity of ∼ 500 km s−1, but

noted that a bimodal distribution was more consistent, with peaks at 0 km s−1 and 600 km s−1. The

authors note, however, that the bimodal distribution might be an anomaly from inaccurate distance

measurements6. More recently, Hobbs et al. (2005) studied a sample of 73 younger pulsars (ages

less than 3 Myrs), and found a mean velocity of 400 km s−1, and overall Maxwellian distribution

with standard deviation σv = 265 km s−1. The results from these classical studies are presented in
6
This is consistent with the results and distance measurements of Hobbs et al. (2005). At the same time, however,

Arzoumanian et al. (2002) find a similar bimodal distributions.
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Table 1.3.

Although the existence of such large natal kicks is observationally known, the specific

mechanisms for producing them remain uncertain. The fundamental issue is how to produce the

required asymmetries—on the order of a few percent. Possible mechanisms can be grouped into

three classes: hydrodynamic, neutrino, and exotic. For the first two classes, we follow the discussion

of Lai (2000) and references therein.

Reference Mean Velocity (km s−1) Variance (km s−1) Type

Hansen & Phinney (1997) 250 190 Maxwellian

Fryer et al. (1998) 500 - Bimodal

Hobbs et al. (2005) 400 265 Maxwellian

Table 1.3: Estimates for mean natal kicks based on observations and simulations. Although the
mechanisms to deliver such kicks remain largely uncertain, objects are known to have kicks in the
range of 100 – >1000 km s−1.

Hydrodynamic mechanisms require initial asymmetries in the pre-collapse stellar core,

which lead to asymmetries in matter ejection (and to a lesser extent neutrino emission). Core

asymmetries are believed to arise from pre-supernova perturbations, and become enhanced during

the explosion. Oscillatory gravity-modes (g-modes) are constrained to the core due to stratified con-

vection zones, and driven by the �-mechanism in which a small density perturbation on one side of

the star gives way to increased nuclear burning. Enhanced burning then increases the local pressure,

which propagates through the star and causes another density perturbation on the opposite side.

Neutrino driven asymmetries rely on a far more subtle mechanism—the parity violation

induced by strong magnetic fields. The cross section of neutrino-producing (‘Urca’) processes depend

on the relative orientation of the magnetic field and neutrino momentum7(e.g. Arras & Lai, 1999).

Additionally there could be a net drift flux along the magnetic field due to νe and ν̄e. Under

the category of exotic mechanisms, additions to the standard model have been proposed—e.g. a
7
This direction dependence may, however, be smoothed out by scattering (Lai, 2000).
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‘sterile neutrino’–which follows the same formation processes but has a much lower cross-section of

interaction with nuclear matter (e.g. Kusenko, 2005).

The first order effects of supernova explosion on binary dynamics can be examined analyt-

ically, regardless of the kick mechanism. Consider a supernova in which the primary star loses some

fraction of its mass 1− �, resulting in M
�
1 = �M1; and receives a kick of magnitude w, resulting in a

relative velocity:

�Vf = �Vi + �w (1.4)

where the subscript ‘i’ and ‘f ’ refer to initial and final respectively. The system8 remains bound if

µf

V
2
f

2
− GM1M2

ai
< 0 →

V
2
f

V
2
i

< 2
Mf

Mi
(1.5)

If there were no kick-velocity (i.e. �Vf = �Vi), the binary would become unbound if more

than half of the total mass was lost in the explosion. A kick which decreases the net velocity allows

more mass to be lost, and visa versa. In some DCO formation scenarios—namely, a stellar-mass

neutron star along with a giant who’s core mass Mcore � 4.2M⊙—an auspicious kick would be

required to keep the system bound (Taam & Sandquist, 2000).

The problem is further complicated by two sequential kicks, preceding and or intervening

common envelope phases, and significant mass-loss via winds, Roche-lobe overflow, and common

envelope ejection. Based on observations, however, the resulting barycentric velocities can be con-

strained. Fryer & Kalogera (1997), for example, find a minimum center-of-mass (COM) velocity of

∼ 200 km s−1 for the short-period DNS systems PSR 1913+16 and PSR 1534+12 (see table 1.1),

consistent with other studies (e.g. Thorsett et al., 2005). Population synthesis simulations find sim-

ilar results, with mean COM velocities of ∼ 200 − 300 km s−1 (Belczynski et al., 2002; Portegies

Zwart & Yungelson, 1998; Fryer et al., 1999). Figure 1.6 shows characteristic COM velocities after

the second SN in DNS, DBH, and BH-NS systems respectively, from Belczynski et al. (2002).
8
For a brief review of the relevant orbital parameters, see § A.3.



20

DNS
BH-NS
DBH

VCOM [km s-1]

Figure 1.6: Center of Mass Velocities for DCOs, Post Second Supernova–reproduced from Belczynski
et al. (2002). The cumulative distribution (top panel) shows the net result of all DCO subtypes
(bottom panel). The large peak at zero velocity is due to DBH systems in which both black-holes
were formed by direct-collapse–assumed to be isotropic.

1.4 The Double Compact Object Population

In anticipation of direct gravitational wave detections, the last two decades have seen

extensive research on the expected rates of gravitational wave signals. DCO in-spirals are not only

the best understood candidates for GW signals, but the only type expected to be detectable by

Virgo-LIGO. Here we describe the expected detection/merger rates, and the existing research on

the distribution of in-spiral progenitors. In §2.2 we describe the basic operational principles of

current GW observatories.

In a classic paper, Narayan et al. (1991), examines the 3 DCO systems9 known—while

taking into consideration the fraction of the sky which had been surveyed—at the time, to reach an

expected merger rate of ∼ 1 yr−1 within 200 Mpc h−1 for DNS systems (and a comparable rate for

BH-NS systems). In another classic paper, Phinney (1991) used B-band luminosity–as a tracer of

the star formation rate–combined with the observed binary fraction, to estimate an expected DNS
9
DNS systems PSR 1534+12, PSR 1913+16 and also what is now believed to be a NS-WD system PSR 2303+46.
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merger rate of ∼ 1 yr−1 within 200 Mpc h−1, and roughly the same for DBH and BH-NS systems.

More recently, studies such as Kalogera et al. (2004) have continued these types of calcula-

tions with more rigorous statistics and new observations to refine the estimates. The same group has

also employed the same precision in population synthesis models to explore the subject, and espe-

cially DBH and BH-NS systems, from an alternate direction (Kalogera et al., 2007; O’Shaughnessy

et al., 2008). These, most recent, results are a factor of ∼ 100 lower than those of 1991. Table 1.4

summarizes these findings as seen in Abadie et al. (2010).

Source Rlow (Mpc−3 Myr−1) Rmean (Mpc−3 Myr−1) Rhigh (Mpc−3 Myr−1) Reference

DNS 0.01 1 10 [1]

BH-NS 6×10−4 0.03 1 [2]

DBH 1×10−4 5×10−3 0.3 [3]

Table 1.4: Expected merger rates of DCOs per Mpc3 per Myr. Internal references: [1] - Kalogera
et al. (2004); [2] - O’Shaughnessy et al. (2008); [3] - Kalogera et al. (2007). Rlow and Rhigh are
95% confidence intervals around the probability density function mean Rmean.

Merger times are generally found to be relatively insensitive to kick-velocity (Bloom et al.,

1999; Fryer et al., 1999, O’Shaughnessy, R., private communication, 2010), however, a study by

Portegies Zwart & Yungelson (1998) suggests that high velocity systems tend to merge in shorter

time scales. Estimates of DCO mean merger times range significantly, but most estimates lie between

108 yrs (e.g. Bloom et al., 1999) and 109 yrs (e.g. Portegies Zwart & Yungelson, 1998). Such long

lifetimes, combined with large velocities, allow these objects to travel up to megaparsecs before they

merge, possibly leading to large discrepancies between their distribution and that of baryonic matter

(stars and gas).

Ours is the first study to perform a detailed examination of the full phase-space distribution

of DCOs in fully dynamic simulations of a local like universe. More limited studies have been

performed in the past, however. Figure 1.7–reproduced from Bulik et al. (1999)–shows the cumulative

distribution of DCOs in a MW-like potential for numerous kicks; these results are characteristic of
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Figure 1.7: Cumulative distribution of DCO vs. Projected Distance from a Milky-Way like Galaxy
for Numerous Kick Velocity Models–reproduced from Bulik et al. (1999). These results are charac-
teristic of early studies of compact binary distributions, evolving in static potentials of an isolated
galaxy.

this type of study (see also: Portegies Zwart & Yungelson, 1998; Fryer et al., 1999). Work by Zemp

et al. (2009), which we continue, has shown that DCO retention is actually much lower, when the

environment and dynamic history of the host halos are considered.
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2 Gravitational Radiation and

Observation

Radiation is any mechanism by which energy can be transported from a source to arbitrarily

large distances. The standard example is light (electromagnetic radiation), but the existence of non-

photonic radiation has been known since the work of Becquerel, and the Curies at the end of the

19th century. Radiation not only caries energy out to infinity, but also information–such as that

recovered by optics-based telescopes since Galileo. More recently, non-photonic radiation has been

used to the same end. Super-Kamiokande, for example, was the first experiment to confirm neutrino

flavor oscillations (e.g. Fukuda et al., 1998); and HiRes has been delivering high-resolution maps of

the high-energy cosmic ray sky for many years (e.g. High-Resolution Fly’s Eye Collaboration et al.,

2007).

In the last decade, construction has been completed on the first-ever gravitational wave

observatories (GWO) marking the first example of not only non-photonic but also non-particulate

astronomy. The Laser Interferometer Gravitational-Wave Observatory (LIGO), for example, is a

joint project headed by Caltech and MIT (also involving numerous other institutions) which began

operation in 2002, and reached design efficiency in 2005 (Abbott et al., 2009). Similar projects

exist across the globe with Tama in Japan (Takahashi & the TAMA Collaboration, 2004); the

German-UK GEO, based in Germany (Lück et al., 2006); and Virgo in Italy by the European

Gravitational Observatory (Acernese et al., 2006). While no GW detections have been made to
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date, even pessimistic estimates for event-rates and detector sensitivities suggest that detections are

extremely likely in the next decade—especially following the current upgrades to the LIGO detectors.

The detection of gravitational wave signals is the ultimate motivation of the present study.

The physics of gravitational waves and the remarkable engineering required to detect them is be-

coming an expansive and intricate field in-and-of themselves. In §2.1, we present a basic motivation

for the existence of gravitational waves and some of their key features. A discussion of GW detectors

follows in section §2.2.

2.1 Gravitational Waves

For a rigorous analysis, see Landau & Lifshitz (1975), Hartle (2003), or Hughes (2009);

alternately, for a concise, yet detailed overview see Peters (1964). Einstein’s field equations, in the

standard formalism1:

Rµν −
1
2
gµνR = −8πGTµν (2.1)

relates the effects of mass & energy (the stress tensor Tµν–right hand side) to the geometry of

spacetime (the metric tensor gµν–left hand side)2. We can linearize the field equations by assuming

weak perturbations3 to the galilean metric (flat spacetime):

g
�
µν = gµν + h

�
µν (2.2)

Linearization introduces some gauge arbitrariness, resolved by introducing appropriately chosen

supplementary conditions, namely hµν = h
�
µν − 1

2δµνhλλ. We can then rewrite Eq. 2.1 as

�hµν =
�

1
c2

∂
2

∂t2
−∇2

�
hµν = −16πTµν (2.3)

where � ≡ ∂2

∂xµ∂yµ
is the d’Alembertian operator.

1
We use Einstein’s summation notation aµbµ = a1b1 − (a2b2 + a3b3 + a4b4).

2
The Ricci curvature tensor (Rµν and there-in the Ricci scalar curvature, is a function of the metric tensor and

its derivatives.
3
Self-consistent with the resulting perturbation amplitudes (e.g. Eq. 2.15).
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If we consider a region of empty space we see that this simplifies to the classical wave

equation (i.e. �hµν = 0). If we examine a plane-gravitational wave

�
∂

2

∂x2
− 1

c2

∂
2

∂t2

�
h

ν
µ = 0 (2.4)

we find solutions as a function of t± x
c , corresponding to waves traveling in the negative and positive

x-direction. Such plane waves (described by an energy density hµν = heµν cos[ωt − �k · �x]) can be

characterized by a polarization tensor (eµν). After choosing a suitable gauge, we arrive upon a

pair of polarizations separated by an angle of π
4 , generally designated h+ and h×. By analogy to

electromagnetism, we can immediately conclude that the energy-momentum (pseudo-)tensor will be

proportional to the product of two components of the perturbation tensor (hµν), for each independent

polarization4, i.e.

t
µν ∝ h

2
+ + h

2
× (2.5)

The full solution to the linearized Einstein equations (Eq. 2.3) with the presence of source

terms is (Peters, 1964)

h
µν(�x) = 4

�
T

µν(�x�)
|�x− �x�| d

3
x
� (2.6)

or after employing the large distance (r ≡ �x− �x
� � �x

�) approximation,

h
µν =

4
r

�
T

µν
d
3
x
� (2.7)

Based on our initial linearization, we can say that ∂T ν
µ

∂xν
= 0 (but note that these are just the classical

conservation laws). From this and Gauss’ theorem, we can rewrite Eq. 2.7 as

h
µν =

2
r

d
2

dt2

�
x

µ
x

ν
ρ(�x)d3

x =
2
r

d
2

dt2
I

µν
. (2.8)

Equation 2.8 says that the amplitude of gravitational waves is inversely proportional to the distance

from the source, and is proportional to the acceleration of the quadrupole moment of the rest-

mass density (Iµν). It may be insightful to note, that no lower-order moments could contribute to
4
While a differential analysis of the two polarizations is key to extracting physical parameters from gravitational

wave signals, we are presently interested in the overall gravitational wave strain h.
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gravitational radiation, as the first-moment (monopole) is the total mass of the system, which is

constant; and the second (dipole) is the center of mass of the system, which is inertial.

Combination of Eq. 2.8 and the exact form of Eq. 2.5 (Peters & Mathews, 1963) yields an

equation for the power dissipated per solid angle α:

dP

dα
=

G

8πc5

�
d
3

dt3
Iµν êµν

�2

(2.9)

It is then trivial to plug in the quadrupole moment of a binary system (see the equations presented

in §A.3), integrate over all angles, and average the power dissipated over a period to obtain

<P> =
32G

4

5c5

M
2
1 M

2
2 (M1 + M2)

a5(1− e2) 7
2

�
1 +

73
24

e
2 +

37
96

e
4

�
(2.10)

In Eq. 2.10, the strong dependence on eccentricity is reasonable given its enhancement to the acceler-

ation at pericenter where the majority of the power will be dissipated; note that this has a tendency

to circularize the orbit5. Peters (1964) derives an equation for the loss of angular momentum; the

effect on eccentricity is given by

�
de

dt

�
= −304G

3

15c5

M
2
1 M

2
2 (M1 + M2)

a4(1− e2) 5
2

�
e +

121
304

e
3

�
(2.11)

Plugging into Eq. 2.8 (e.g. Postnov & Yungelson, 2006) gives the strain of each polarization,

h+ =
2G

5
3

c4

1
r
(πfM)

2
3 µ(1 + cos2 i) cos(2πft) (2.12)

h× =
4G

5
3

c4

1
r
(πfM)

2
3 µ cos i sin(2πft) (2.13)

where we have introduced the inclination i at which the system is being observed (s.t. i = π
2 is a

system edge-on), and frequency and phase f and t. Thus if the coalescing binary is perpendicular

to the direction of the observer, one of the polarizations is null—greatly reducing the extractable

information from the inspiral signal.

The ‘chirp-mass’ M ≡ µ
3
5 M

2
5 , is commonly used in the literature as it fully determines

the GW amplitude for a given distance and frequency. Using the chirp-mass, and averaging over an
5
Relativistic beaming has the same effect, but is only especially important at the very last moments of in-spiral,

where, especially for DBH systems, it can deliver a strong kick (e.g. Campanelli et al., 2007).
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orbital period, the wave amplitude can be written as

h =
�

32
5

� 1
2 (GM) 5

3

c4

(πf) 2
3

r
(2.14)

or in more convenient units, as

h = 10−22

�
M
M⊙

�− 5
3

�
f

100 Hz

� 2
3

�
r

100Mpc

�−1

(2.15)

The ‘strain’ (Eq. 2.15)–the fractional change in distance as a gravitational wave passes a detector–is

what would actually be observed by detectors; with a characteristic value around 10−22–10−21.

We can similarly rewrite the expression for average power (Eq. 2.10) as a function of the

chirp-mass, and the frequency of the system

<P> =
32G

7
3

5c5
(Mπf)

10
3 (2.16)

Equation 2.10 can be directly employed with Eq. A.3 (§A.3) to find the evolution of the

semi-major axis
�

da

dt

�
= −64G
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We can now determine how long it will take a binary of reduced mass µ, period τ , eccentricity e,

and total mass M to merge due to gravitational radiation. In convenient units (Hughes, 2009)

τmerge ≈ 5× 1010 yr
�

τ

day

� 8
3

�
µ

M⊙

�−1 �
M

M⊙

�− 2
3

(1− e
2)

7
2 (2.18)

This is the nature of the orbital decay predicted for PSR1913+16, and its consistency with obser-

vations, illustrated in Fig. 1.1. With a baseline-reference the diameter of the earth, a standard GW

strain amounts to a change of about 0.01 pm–one billionth the width of a human hair. This should

be detectable with current laser-interferometer gravitational wave detectors.

2.2 Gravitational Wave Observatories

The first attempt at a gravitational wave detector was with the resonant-mass type design—

termed a “Weber bar” after its creator (Weber, 1960, 1968). A network of such resonant-mass detec-

tors are currently operational (Prodi et al., 2000). Currently the instrument of choice is consistently
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the the Michelson interferometer (see, e.g. Michelson, 1924), pioneered in large part by Weiss and

Forward (Moss et al., 1971; Weiss, 1972). None the less other strategies, such as pulsar-timing arrays

are being explored. Diagrammed schematically in Fig. 2.1, The Michelson interferometer offers a

natural method of increasing the effective detector size by repeatedly reflecting the laser beam along

each beam cavity. While pulsar timing arrays utilize the entire path length between observer and

pulsar, interferometers suffer from better understood and well constrained noise sources.

As a gravitational wave crosses the detector, the strain pattern expands space—and any

equipment occupying it—in one direction, while contracting it in the perpendicular direction. The

effective difference in path length traversed by the laser-beam is minuscule, only one part in ∼ 1021.

The Michelson interferometer uses a beam-splitter to pass incident laser light along two perpendicular

paths, at the end of which they are reflected back. In the unstrained state (devoid of GWs) the lasers

from the two paths interfere destructively at the antisymmetric port which then sends no output

signal. When a GW passes through the apparatus, one arm of the detector will be expanded and

the other contracted–leading to constructive interference at the antisymmetric port, and an output

signal proportional to the strain and the input laser intensity. Three interferometers constitute the

LIGO system, one 4 km and one 2 km interferometer are located at Hanford, Washington; and one

4 km-long is located in Livingston Parish, Louisiana, shown in Fig. 2.2. Data is compared between

the two LIGO sites, and also the GEO and VIRGO instruments, allowing for better noise and error

rejection.

Our discussion of detector design follows Abbott et al. (2009), and is thus based on the

LIGO design. All of the other currently operating laser-interferometer GWOs operate on the same

principles, however. To increase the detector sensitivity, a Fabry-Perot optical cavity reflects the

light back-and-forth along the arms to increase its power and effective length; this affects a factor of

100 increase in sensitivity. Additionally, another power recycling cavity is established by the Power

Recycling Mirror. Combined, the power recycled Fabry-Perot configuration yields an 8000 times

increase in sensitivity.
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Figure 2.1: LIGO Michelson Interferometer–modified from Abbott et al. (2009). This configuration
establishes a Fabry-Perot cavity between each ITM and ETM, and a power recycling cavity between
the PRM and each ITM. The combined effect of these cavities is an ∼ 8000 times increase in
sensitivity compared to a simple Michelson interferometer. The inset shows an ETM mirror inside its
pendulum and seismic isolation system. Although the mirror is transparent in the visual spectrum,
it is highly reflective in the infrared band of the laser. The mirror actuators are also apparent around
the perimeter.

Despite fused-silica optics, polished to a surface deviation of less than 5Å, numerous mea-

sure are taken to eliminate as much noise as possible. The mode-cleaner filters laser noise before

passing the light into the vacuum cavity, which is kept at a pressure of ≤ 10−8 torr; despite the high

vacuum, baffles are used along the beam path to catch scattered light. A Faraday isolator uses the

Faraday effect6 to ensure only source light enters the system (Gauthier et al., 1986). Even the small

amount of absorbed light causes minor thermo-elastic distortion of the mirrors, and thus additional

lasers (‘heating beams’) are used to control the radial profile of the mirrors.

Noise reduction is critical to Interferometric GWO operation, as sensitivity to signals

smaller than even (e.g.) the stochastic seismic background is required. Vibrational isolation is
6
Light from the source is polarized vertically, then passes through a magnetic field rotating the polarization 45

◦

until an analyzer on the opposite end allows light of that polarization to pass through. Light entering in the opposite

direction enters the rotation chamber at 45
◦

from vertically, and is further rotated 45
◦
–becoming horizontal–once it

reaches the opposite end, where it is completely absorbed.
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Figure 2.2: LIGO Livingston, Louisiana Detector–Reproduced from Abbott et al. (2009).

provided by four-layer mass-spring isolation stacks, to which the pendulums which house the optics

are attached. Between the optics and the pendulum, electromagnetic actuators actively damp eigen-

modes of the suspension system and also maintain proper cavity length. Currently, one detector

location also employs hydraulic seismic pre-isolators.

Overall, LIGO is sensitive to signals between 40-7000 Hz, with a peak sensitivity of 3×10−23

rms strain-noise at ∼ 100 Hz. Figure 2.3 shows detector sensitivity over the frequency band. The

expected detection rates for these sensitivities and those of the ‘Advanced LIGO’ improvements–

scheduled for operation in 2015 (Abadie et al., 2010)–are shown in Fig. 2.4 as a function of initial

stellar-mass fraction—one of the most uncertain factors in calculating rates, and thus providing the

full range of possible results. The detectors themselves are only the first step in truly detecting

events. DCO in-spirals will appear as ‘bursts’ in the data, with durations of less than a second.

These bursts must be dredged out of months or years of observations from five or more detectors

(e.g. Virgo-LIGO-GEO coincident runs). Also, because the event rate per distance is limiting, the

most likely signal-to-noise ratios (SNR) will be at or just-above threshold.

To monitor and calibrate the efficiency and efficacy of the data analysis procedures, simu-
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Figure 2.3: LIGO Frequency Sensitivity–Reproduced from Abbott et al. (2009). Each of the three
MI are shown, with H1 in red, H2 in blue, and L1 in green. The dashed grey line corresponds to
the design goals.

lated events are ‘injected’ both via software and hardware–in which simulated GW signals are added

via the test-mass actuators. Overall excess power algorithms are preferred over templates due to

both the large parameter space that would need to be analyzed, and also the insufficiency of the

post-newtonian algorithms which are predominant in current simulations.

The purpose of GWOs like LIGO is not merely to make a detection, but to gleam new

information from their sources via parameter reconstruction—which, in itself, is a highly complex

task. Theoretically, the chirp-mass, semi-major axis and distance to the object should be read-

ily accessibly from the in-spiral waveform (see §2.1 and particularly Eqs. 2.14 and 2.17; note that

the eccentricity will be assuredly approximately zero). The angular position of the event could be

determined to some accuracy by the difference in detection time from numerous detectors. Based

on timing alone, three detectors could determine a unique position per hemisphere, with a fourth

detector needed to remove the degeneracy across the plane (measurement of each wave polarizations
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Figure 2.4: Expected Detection Rates for Current and Advanced LIGO–reproduced from Sadowski
et al. (2008). The detection rate is shown as a function of the initial stellar-mass fraction in dense
star clusters–the most likely range of which is represented in the shaded region. The upper and
lower rate bounds are from estimates on cluster merger rates–for more details see Sadowski et al.
(2008) and references therein.

however, could resolve that degeneracy with only three detectors). This suggests a realm of astron-

omy the exact reverse of the classical, photonic regime in which angular position can be resolved to

extreme accuracy, and distance can only be determined approximately by inference and relation to

an elaborate ‘ladder’-scheme.

Accurate measurements of these parameters would be valuable for the advancement of

astronomical knowledge; many applications have been suggested, from better determining the Hubble

constant (e.g. Schutz, 1986), to better constraining NS equations of state (e.g. Krolak & Schutz,

1987). Parameters which influence the frequency-space evolution7 of the signal can be determined

to an accuracy proportional to ∼ N−1
p , where Np ∼ 103–104 is the number of periods for which the

7
Namely the phase evolution which requires waveforms accurate to much higher order than those described in §2.1
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signal is detectable (e.g. Finn & Chernoff, 1993; Cutler & Flanagan, 1994). Information encoded in

the amplitude and polarization, on the other hand, will simply be inversely proportional to the SNR

(ρ), or for numerous detectors, the cumulative SNR (ρ =
�
Σρ

2
i

� 1
2 ).

For the purpose of the current study, we are concerned with reconstruction of the source

distance and angular position in the sky. Fairhurst (2009) and Cavalier et al. (2006) suggest that in a

3-detector network, using only timing information (for a lower bound on accuracy), the source could

be triangulated to 1–20 square degrees. These results are consistent with earlier work by Cutler &

Flanagan (1994), suggesting an angular and distance uncertainty of σα ∼ 1◦ and 30% respectively.

The possible addition of a fourth interferometer, such as a possible AIGO detector in Australia or

LGCT in Japan, could significantly enhance the sky localization accuracy and moderately improve

distance sensitivity (Mandel, 2010; Fairhurst & Mandel, 2011).

Preparation for the next generation of gravitational wave observatories is already underway,

for instance the space-based Laser Interferometer Space Antenna (LISA) (e.g. Belczynski et al.,

2008). This detector, in solar orbit with millions of kilometer long arms, would have accuracies orders

of magnitude higher than LIGO-Virgo, and a sensitivity band extending much lower. LISA could

potential detect GW from relatively stable, large-period binaries as well as the inspiral of SMBH(e.g.

Willems et al., 2008). The use of atomic interferometers, currently used to make high precision

measurements of fundamental constants (e.g. Fixler et al., 2007; Zhou et al., 2011), is also being

explored (e.g. Dimopoulos et al., 2009). In terms of non-interferometric designs, ‘MiniGrail’ (e.g.

Gottardi, 2007) is being developed as a next-generation resonant-mass detector. Current prototypes

by the MiniGrail group are able to achieve strain sensitivities of order ∼ 10−20.
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3 Simulation and Selection

Previous studies of the distribution of double compact objects have generally used static

simulations of only the Milky-Way’s current gravitational potential (see §I). From those simulations

the overall distribution of DCOs has been generalized to all galaxies from which GW signals might

be detected. While this approach is a logical starting point, it is lacking in numerous fundamental

features. Most fundamentally, GW Signals are expected from a sample volume including at least

hundreds of galaxies with morphologies and histories which can vary significantly from that of the

Milky-Way (MW). Even in the case of the MW alone, however, the current mass is significantly

larger than its effective mass over cosmological time-scales. Use of the current MW mass will tend

to over-retain DCOs which might otherwise become unbound. Finally, the morphology of galaxies is

strongly dependent on the history of their mergers and evolutionary environment. Tidal interactions

and collisions between galaxies can have a strong impact on the distribution of high velocity DCOs—

an effect entirely absent from analysis of single, static halos.

To address these concerns and improve upon previous models, we use full cosmological

structure formation simulations to elucidate the distribution of double compact objects. Most studies

to date have only explored the radial distribution of binaries relative to their host. The inherently

large-scale nature of our simulations allow us to examine the full, three-dimensional phase-space

distribution of systems for many host masses and evolutionary histories. In §4 we discuss the results

of these simulations which elucidate the additional information to be eventually compared with GW

observations. In this section, we describe the key feature of our simulations1.
1
See Zemp et al. (2009) for a detailed description.
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3.1 Dark Matter Simulation

The simulation is composed of 2563 dark-matter (DM) particles in a periodic, 80 Mpc

co-moving cube. In the cosmological size-scale of interest, Baryonic-matter (e.g. stars and gas) is

relatively insignificant (Jarosik et al., 2011). The mass resolution is mp = 1.07×109
M⊙, or roughly

2000 particles per Milky-Way like halo. Our simulations are thus sensitive to the distribution of

dwarf-halos and larger structures, and most importantly the merger-history of larger (MW-like and

above) halos.

The simulation is initialized at redshift z = 22.4 (13.5 Gyrs ago, t ≈ 161 Myr after the

big-bang), and seeded with density perturbations and appropriate cosmological parameters from the

Wilkinson Microwave Anisotropy Probe third-year (WMAP3) data (Spergel et al., 2007)—namely,

a Hubble factor of H0 = 73 km s−1, a matter energy density of ΩM,0 = 0.238, and a dark energy

density of ΩΛ,0 = 0.762 (see table 3.1 for a summary of key simulation parameters). These values

are still consistent with the most recent results of WMAP7 (Larson et al., 2010; Jarosik et al.,

2011). Periodic boundary conditions increase the effective size of the simulation, allowing data to

be analyzed to a radius of 80 Mpc from any origin. Particles are never counted repeatedly to avoid

artificially polluting the distribution’s power spectrum.

Feature Value

Size (comoving) 80 Mpc

Initialization Time 161 Myr (z = 22.4)

ΩM,0, ΩΛ,0 0.238, 0.762

Particles 2563 ≈ 17× 106

Mass Resolution 1.07× 109 M⊙

Populated Halos (z=1.6) 2461

Tracers per Populated Halo 2000

Table 3.1: Summary of Simulation Values.
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The simulation is evolved using the parallel tree code PKDGRAV2 (Stadel, 2001) until

z = 1.60 (4.24 Gyr)–the star formation peak (Madau et al., 1996). At this point, halos are identified

using a friend-of-friends algorithm in which all particle pairs are linked if their separation is less

than a certain fraction of the mean particle separation (Davis et al., 1985). Each halo with mass

greater than 2.15×1011
M⊙ (2461 halos) is populated with 2000 massless tracers, each representing a

compact binary system (hence-forth we use the term ‘tracer’ to describe a simulated DCO). Tracers

are injected into the center of their halo, with an isotropic Maxwell-Boltzmann velocity distribution

with mean speeds v̄ = 360, 180, & 90 km s−1 and dispersions σv = 150, 75, & 37.5 km s−1 for

models M360, M180, & M90 respectively; summarized in table 3.2 and consistent with the observed

distribution of systemic velocities (see §1.3).

Model Mean Velocity (km s−1) Variance (km s−1)

M360 360.0 150.0

M180 180.0 75.0

M90 90.0 37.5

Table 3.2: The mean velocity and variance of each kick-velocity model. Tracer velocities are initial-
ized isotropically according to a Maxwell-Boltzmann distribution, in accordance with observations
(see §1.3).

Figure 3.1 shows a small, characteristic region of the simulation. Tracers are shown in

green, red, and blue corresponding to models M360, M180, & M90 respectively, overlaying the dark

matter distribution in white. Some dwarf halos (bottom right quadrant) are apparent which weren’t

massive enough to be populated with tracers.

The small length scales in the very centers of halo cores (distances less than tens of kpc—

corresponding to regions smaller than the blue tracer cores in Fig. 3.1) are not adequately resolved

in our simulations, and the length scales of interest are significantly larger—on the order of tens of

Mpc. Additionally, baryonic matter is expected to dominate in these local regions, thus any DCOs

which are entirely bound to halo cores can be expected to virialize with the local stellar distribution.

Tracers are weighted linearly with their progenitor halo’s mass in all of our calculations, as
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Figure 3.1: Snapshot of a small at z = 0 region of the simulation. Tracers (colored) of different
velocities are overlaid with dark matter (white). The colors green, red, & blue correspond to models
M360, M180, & M90 respectively.

the star formation rate is close to linearly related to stellar mass (Shimasaku et al., 2008; Dutton

et al., 2010)–illustrated in Fig. 3.2–roughly as is the relation between stellar mass and halo mass

over large mass ranges (Moster et al., 2010). In general, the local merger rate of DCOs is given by

the convolution of the star formation rate with the probability distribution of merger time delays.

As described above, we use the approximation of a single injection time, and perpetuate all tracers

until redshift zero. The merger of systems formed near the star formation peak dominate the local

merger rate by a factor of � 3 (Guetta & Piran, 2005), motivating our simplification. Additionally,

merger times are found to be relatively insensitive to kick velocity (e.g., Bloom et al., 1999). Thus,

for each of our kick-velocity models, our results can be easily scaled to match the expected merger

rate of a given model.
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Figure 3.2: Star Formation Rate (SFR) vs. Stellar Mass–reproduced from Dutton et al. (2010),
summarizing data from references therein. Across a broad range of red-shifts, the SFR is close to
linearly proportional to a halos stellar mass. We therefore weight our tracers linearly with the mass
of the halo they were formed in.

3.2 Local Group Selection

In §3.1, the draw backs of simulations involving only a Milky-Way like halo were discussed,

and in §3.1 the improvements in the current simulations were described. To better model the local-

universe from which observations will be made, we have selected a region of the simulations which

is maximally similar to our region of the universe.

As described by Zemp et al. (2009), a fixed MW halo potential tends to noticeably overes-

timate the bound population of tracers. Additionally, the nascent environment of a given tracer has

a drastic effect on its evolution, as seen in Fig. 3.3. The history of mergers and tidal interactions

between halos is similarly important for determining how well tracers are bound to their progenitor

halos over time. We use the current properties of the local universe to best match an appropriate re-

gion of the simulation. Specifically, a local-like universe is defined by criteria modified from Hoffman

et al. (2008):
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Figure 3.3: Simulation at z = 0.0 with Dark Matter (top row) and Tracer (bottom row) distributions
in a variety of environments–reproduced from Zemp et al. (2009). The tracers in each bottom panel
correspond to their progenitor dark matter halos circled in the top panel directly above. All three
pairs displayed are from the highest kick-velocity scenario (M360). In the cluster environment (right-
most panel), even high kick-velocities are small compared to escape velocities approaching 1000 km
s−1. Each panel is 10Mpc in length.

1. Two dark matter halos with maximum circular velocities vc ∈ [125, 270] km s−1

2. These halos separated by a distance d ≤ 1.4 h−1 Mpc

3. Relative velocities v ≤ 0 km s−1

4. No halos with higher maximum circular velocities than either of the pair within 3 Mpc.

5. There is a virgo-like halo with vc ∈ [500.0, 1500.0] km s−1 and d ∈ [5.0, 12.0] h−1 Mpc,

6. No other large halos with virgo-like masses within 12 h−1 Mpc.

While this local-like universe doesn’t perfectly parallel the true history and environment of

the milky-way and its surrounding region, we assume that similar resulting characteristics will be
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indicative of similar pasts and kinematics. Small incongruities between the simulated and true local

universe should be insignificant in the large volumes under consideration.

Out of the 2461 dark-matter halos populated with tracers, there exist tens of pairs matching

criteria 1 and 2—only two of which have virgo-like clusters at the appropriate distances. One of these

two groups has additional massive structures at virgo-like distances, and was therefore excluded

based on criteria 6. The resulting, optimal local-like group is depicted in Fig. 3.4. The Milky-

Way and Andromeda analogs are circled on the left, and the virgo-like cluster on the right. For

completeness, our distributions in §4 are all generated from a Sol-like offset from the MW center,

relative to the M31-equivalent galaxy.

Figure 3.4: The local group analog in projection: Milky-Way and Andromeda-like halos circled on
the left, and virgo on the right. This ∼ 10 Mpc wide region is colored by density.
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Part II

Results
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4 Particle Distributions

Figure 4.1 shows the local-like universe described in §3.2—the density profile juxtaposed

with the tracer distributions for each kick-velocity model (described in §3.1). The most apparent

feature of Fig. 4.1 is the extension of the tracer distribution at high velocities (360 km s−1), consistent

with predictions. A comparison of the region around the virgo-like cluster (right side) with that

of the MW-like pair (left side) echos the results of Zemp et al. (2009) in regards to environment

dependence. Because the potential well of the virgo-like cluster is far deeper than that of the pair,

fewer tracers become entirely unbound. At the same time, the tracers from each halo of the cluster

have become significantly mixed, and even the tracers which are contained in the inner halo-cores

of M90 are extended into the outer-halos of M360.

Tracers at velocities above the escape velocity of their progenitor halo become unbound,

and form an extended background. Double compact objects which fall into this group could be

expected to merge at significant distances away from their hosts. DNS and BH-NS systems are

expected to produce large electromagnetic outbursts shortly after the peak of their GW-inspiral

signals; including, perhaps, short-duration Gamma-Ray Bursts (GRBs) (see, e.g. Lee & Ramirez-

Ruiz, 2007). So far, short GRB host identifications have been based entirely on angular nearest-

neighbor associations, as they themselves yield no known distance or red-shift information. As GRBs

are believed to have been observed out to redshifts of a few, if their progenitors are distributed in a

manner consistent with M360, the probability of coincident associations could be non-negligeable.

These tracer distributions are quantified in Fig. 4.2, where mass is plotted as a function
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Figure 4.1: The Local Group Analog: Milky-Way and Andromeda-like halos, and Virgo-like Cluster
indicated (Left Panel), and Tracers at Three Kick Velocities (Right Panel). The effects of kick on
forming a DCO background are readily apparent.

of distance from the Milky Way-equivalent halo. The distribution of tracers are plotted for each

velocity model—M90, M180, & M360—from top to bottom. Although the tracer density peaks are

only subtly altered, once the kick-velocity becomes comparable to the escape velocity of individual

halos–e.g. ∼ 540 km s−1 for the milky way (Smith et al., 2007)–a fraction of tracers leave their

progenitor potential wells. M180 (middle panel) shows the growth of ‘skirts’ around the primary

distribution, but only in M360 (lowest panel) does a significant tracer background form.
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Figure 4.2: Radial Distribution of Tracers and Dark Matter for three Different Kick Velocities. In-
tegrated particle mass in uniform radial-width shells is plotted versus distance from a Sol-equivalent
offset from the Milky Way center. The y-axis is given in arbitrary simulation units, and can easily
be scaled to any population synthesis model. As the kick-velocity increases from 90 km s−1 (top
panel) to 360 km s−1 (bottom panel) a noticeable portion of tracers becomes delocalized, forming a
background and mixing populations.

In these simulations, tracers only respond gravitationally, and therefore their dynamics are

akin to that of a dark-matter test particle. In the lowest velocity case, thus our tracers exactly

follow the central DM peaks. On scales below the resolution of this simulation, double compact

objects would be expected to follow the more effectively damped baryonic matter distribution.

Higher velocity tracers, on the other hand, escape their halos—and regions of significant baryonic

matter. In such extended intergalactic regions DCOs would only interact gravitationally, and thus

be expected to follow distributions similar to that of DM in the same region. This behavior can

be clearly seen in M360 of Fig. 4.2, where the tracer skirts now follow the overall DM distribution,

instead of only the DM over-densities as in M90 and M180.
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The relative portion of tracers in the emerging background of the MW-like halo are depicted

in fractional cumulative distribution in Fig. 4.3. The dashed black-line (and second y-axis) shows

the cumulative distribution of dark-matter to illustrate the local structure. The number of tracers
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Figure 4.3: Cumulative Distribution of Dark Matter and Tracers for Three Kick Velocites. Although
the number of tracers in the central halo is noticeably lower for the highest kick-velocity model,
the difference is negligible once the volume reaches the Virgo-like cluster, where the background
distribution of tracers outweighs changes in local distributions. The rate of mergers is directly
related to these results, with a proportionality constant describing how the merger rate scales with
dark matter halo mass.

within a sphere encompassing the primary and secondary halos is noticeably depleted, but as the

volume approaches the virgo-like cluster, the number of (sub)halos becomes large, and the central

densities dominate the tracer fraction regardless of kick velocity.

As discussed in §1.4, significant attention has been given to the expected rate of GW-

inspiral–and therefore, also predictions of the number of progenitors in a local volume (e.g. Sadowski

et al., 2008). Figure 4.3 can be scaled to any of the results presented in §1.4. For an up-to-date

review of expected merger rates, see Abadie et al. (2010). Despite the background of DCOs that
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form from large kick-velocities, the majority of systems remain bound to their hosts, and differences

are negligible beyond about 8 Mpc. Thus, the merger-rate of DCOs in a LIGO-Virgo detectable

volume should be insensitive to kick-velocity.

Few studies have explored the projected distribution of DCOs in the sky, and the few which

have (e.g. Podsiadlowski et al., 1995) suffer from the same restrictions listed in §3.1. The projected

sky distributions of tracers and dark-matter from this study are plotted in Fig. 4.4. All particles

of a given type within the labeled distance are projected onto a spherical surface with 2◦x 2◦ bins.

Each bin is then colored logarithmically by density, and mapped onto the plane. White pixels are

those with tracer densities below the resolution of the simulations.

Figure 4.4: Sky Maps of Dark Matter and Tracers showing highest to lowest kick-velocity as a
function of distance. Figures make use of Hammer equal-area projections with 2◦x 2◦ bins, colored
by logarithmic density. White pixels represent densities below the resolution of our simulations.
Comparison of the highest and lowest natal kicks illustrate that while peak densities remain relatively
unchanged, a strong DCO background forms from systems which escape their progenitor halos.

Although the integrated tracer distribution is dominated by the bound population (Fig. 4.3),



47

the angular distribution of tracers (Fig. 4.4) varies dramatically. It is again apparent that at 90

km s−1 the tracers follow only the dark matter overdensities, as does the distribution of light (gas

and stars). At 360 km s−1 the tracer distribution becomes more isotropic—more closely following

the overall distribution of mass. At 10 Mpc, ∼40% of the M360 DCO mass lies in pixels outside

those of M90; this number falls to 15% and 10% for 40 and 80 Mpc respectively–a trend as expected

for increasing DM isotropy in projection.

These sky maps are resolved to 4 square-degree pixels, comparable to the expected accuracy

of GW observatories. The apparent differences in distributions suggest that the different velocity

models could be distinguished with a sufficient number of detections. Indeed, the limiting feature

of making such distinctions is the expected rate of detections. None-the-less, in §?? we demon-

strate that the underlying source distributions could indeed be deciphered, offering the prospect of

constraining the progenitors and their properties with GW detections alone.
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5 Data Distinguishability

In §4 we produced three possible configurations of gravitational-wave source distributions.

In this section, we discuss their distinguishability with an array of laser-interferometer GW observa-

tories like that of the LIGO-Virgo network. The differences between models M360, M180, and M90

illustrated in Fig. 4.4 suggest that the degree of isotropy alone could be a strong indicator of the

underlying source distribution, similar to the use of anisotropy in analyzing the cosmic microwave

background. Such a method would require a detailed sampling of the underlying population, which

is not feasible considering the LIGO-Virgo detection rates illustrated in §2.2, Fig. 2.4. Instead, we

assume a detailed knowledge of the underlying dark-matter distribution to facilitate analysis of a

smaller sample size1. A simple Bayesian framework is used to distinguish between kick-velocity

models, similar to the approach used by Mandel (2010).

The ability to distinguish between natal kick-velocity would not only help shed light on

the cryptic mechanisms which deliver those kicks, but also provide valuable information on the

distribution of DCO lifetimes. With enough detections, even the depths of galactic potential wells

could be explored, and the local DM distribution better constrained. It remains to be seen how many

signals are required, and at what accuracies, to begin drawing out useful statistical information.

Reconstructing the source location from GW signals is a complex task, and error estimates

for those reconstructions even more so (see Cutler & Flanagan, 1994, and references therein); espe-

cially in comparison to classical electromagnetic observations. The distance to the emission event

could be determined to within a mean of 30% (Cutler & Flanagan, 1994), and the angular loca-
1
In practice, comparisons would be made between GW signals and the light-distribution.
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tion of the event to approximately 1 − 2◦2 (Cavalier et al., 2006). At first glance, better distance

determination might be expected by simply comparing the chirp mass and signal amplitude (using

Eq. 2.15). The signal amplitude, however, is fairly uncertain; while the frequency and phase infor-

mation encoding parameters, such as the chirp and reduced masses, can be determined to within

� 1% (e.g., Cutler & Flanagan, 1994).

As detections have yet to be made, the precise accuracy of parameter reconstruction has

yet to be seen. In our analysis we explore three possible detector accuracies summarized in Table 5.1.

These accuracies appear as Point-Spread Functions (PSF) in our analysis. The PSFs are assumed

to be gaussian in each coordinate direction, characterized by standard deviations in distance, right

ascension, and declination: σhigh = [5%, 1◦, 1◦], σmed = [30%, 2◦, 2◦], σlow = [50%, 4◦, 4◦]. These

reflect different assumptions for the high, medium, and low accuracy of positional reconstruction for

gravitational-wave detections.

Standard Deviation in

PSF Accuracy Distance Theta (deg) Phi (deg)

High 5% 1◦ 1◦

Med 30% 2◦ 2◦

Low 50% 4◦ 4◦

Table 5.1: Point-spread function parameters. Sampled data points are convolved with a PSF com-
posed of a gaussian distribution with the given standard deviations in distance, theta, and phi.

The exact parameter-estimation accuracy will depend sensitively on the operational details

of the detector network, for example, the relative sensitivity of individual detector locations and

their calibration accuracy. Additionally, the specific features of individual events (e.g. their signal-

to-noise ratio) and their relationship with the detectors (e.g. sky location and orientation of the

binary) will also effect the accuracy with which parameters can be reconstructed. While each of our

models are symmetric with respect to angle (theta and phi), the planar nature of each detector and
2
Compare to HST, for example, which can resolve to the hundredths of arcsecond level.
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the LIGO-Virgo three detector network could break that symmetry.

The three model PSFs should be considered as possible predictions for typical accuracies.

The low accuracy model may be typical for events detected with a three-detector LIGO/Virgo net-

work at the threshold of detectability, and medium accuracies possible for higher SNRs. Meanwhile,

the addition of a fourth interferometer, such as a possible AIGO detector in Australia or LGCT

in Japan, could significantly enhance the sky localization accuracy and moderately improve dis-

tance sensitivity, making medium-accuracy measurements typical and high-accuracy measurements

possible.

5.1 Bayesian Analysis

Bayes’ equation (Eq. 5.1) is simply a pragmatic restatement of the commutative nature of

logic (Eq. 5.23; Bretthorst, 1988).

P (Mi|Dj) =
P (Dj |Mi) · P (Mi)

P (Dj)
(5.1)

P (M,D|I) = P (M |D, I) · P (D|I) = P (D|M, I) · P (M |I) = P (D,M |I) (5.2)

Bayes’ theorem is used to find the probability that a hypothesis/model M is true given data D

[P (Mi|Dj)], by using the probability of theoretical obtaining the data if the model were true

[P (Dj |Mi)]. The ‘prior probability for the model’ [or Bayesian Prior–P (Mi)] incorporates any

prior information for or against the model, while the ‘prior probability for the data’ [or Evidence–

P (Dj)] acts as a normalization constant. Throughout our analysis, we are concerned with the

ability to distinguish between models based on observations per se, and therefore use flat priors [i.e.

P (Mi) = P (Mj)] and equivalent evidence [i.e. P (Di) = P (Dj)]. Additionally, both terms cancel

when we compare different models.

We use data sets Dj ∈ {D360, D180, D90} which are drawn from each model

Mi ∈ {M360, M180, M90} respectively. Each data set is composed of n-independently drawn data
3
Equation 5.2 includes the prior information ‘I’–left out of equation 5.1 for clarity.
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points (tracer positions), defined by a weight (linearly proportional to its progenitor-halo’s mass

mh, as discussed in §3.1) and 3 position coordinates r, θ and φ (or right ascension and declination,

equivalently): Di(n) = {xi,1(mh, r, θ, φ) ... xi,n(mh, r, θ, φ)}. We can then write the probability that

a particular model ‘i’ fits a data set ‘j’ as:

P (Mi|Di(n))
P (Mj |Di(n))

=
P (Di(n)|Mi)
P (Di(n)|Mj)

=
n�

k=1

P (xi,k|Mi)
P (xi,k|Mj)

(5.3)

To take into account the especially large positional uncertainties in reconstructing source

locations, every data point is convolved with some point spread function ‘S’ describing the detector

response, i.e.

Ppos(x, θ, φ) =
� � �

Pevent(x�, θ�, φ�) · S(x− x
�
, θ − θ

�
, φ− φ

�)dx
�
dθ

�
dφ

� (5.4)

In equation 5.4, Ppos is the probability of associating an event with a particular position, and Pevent

is the probability of the event occurring at a particular position. For a discrete sample-space of m

pixels l, this can be rewritten as

P (xi,k|Mj) =
m�

l=1

S(xi,k|pixell) · P (pixell|Mj) (5.5)

For a given PSF, we now have the tools to compute the certainty with which we can ascribe some

number of events to a certain model, the number of events required to reach a desired confidence

level, or the required detector accuracy to reach that confidence.

5.2 Observational Requirements

From each model (M360, M180, and M90) we create 50 ‘data sets’ (D360, D180, and D90),

each composed of 1000 tracers. Using Eqs. 5.3 and 5.5, we find the number of data points (‘detec-

tions’) required to distinguish between models with 99% confidence, in 90% (45/50) of data sets.

This is repeated for each PSF, and two sample volumes (40 and 80 Mpc). The number of detections

required in each case are summarized in table 5.2.
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M360(D360) M180(D180) M90(D90)

Dist PSF Accuracy vs. M180 vs. M90 vs. M360 vs. M90 vs. M360 vs. M180

≤ 80Mpc

High 22 16 26 > 1000 22 282

Med 73 39 35 > 1000 31 384

Low > 1000 349 52 > 1000 50 881

≤ 40Mpc

High 27 17 34 > 1000 23 > 1000

Med 78 46 40 > 1000 37 > 1000

Low 146 137 56 > 1000 56 > 1000

Table 5.2: Number of detections required to achieve 99% confidence in the correct model for 90%
( 45
50 ) of data sets, using three possible detector accuracies and two sample volumes. The three

different detector accuracies are characterized by standard deviations in distance, right ascension
and declination of: σhigh = {5%, 1◦, 1◦}, σmed = {30%, 2◦, 2◦}, σlow = {50%, 4◦, 4◦}. Entries
marked ‘> 1000’ never reached the desired confidence in the 1000 data points, for the required number
of data sets.

We find that 50-100 events would be sufficient to distinguish between the lowest and highest

kick-velocity scenarios for moderate (and plausible) detector accuracies. For low detector accuracies,

200-400 detections could be necessary. The easiest to distinguish case is that of the lowest kick-

velocity (D90), especially in comparison to the highest (vs. M360). In our simulations, distinguishing

between the two low-kick scenarios is very difficult, if not impossible. Both low-kicks are well below

most halo escape velocities, and thus their distributions end up very similar (see Fig. 4.4). The

only high-velocity contrast case which could not be distinguished was D360 vs. M180 at the lowest

detector accuracies and the full sample volume. Overall, the results seem promising. For even the

lowest detector accuracy, the highest and lowest velocity scenarios can be distinguished between

with only hundreds of detections at most.

Readily apparent from table 5.2 is the asymmetry in distinguishing between model x and

model y, with data drawn from model x; and that of distinguishing between model x and y, with

data from model y. The data points from one model contain fundamentally different information

than that of another. For instance, While only 50 detections are required to distinguish D90 from
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M360, almost 350 are required for D360 vs. M90. While the detection of a handful of events clearly

outside any host-galaxy would be hallmark of a strong kick–a sufficiently high signal to noise ratio

for such a clear distinction is unlikely.

To investigate whether distance or angular resolution was limiting, we have explored numer-

ous mixed PSF accuracies, described in table 5.3. The results are presented in table 5.4. Variation

of other parameters were also explored, e.g. lowering the desired confidence to 90% and decreasing

the number of required data sets (to 80%, 96%, and 98%), each with negligible effect on the resulting

detection numbers.

Standard Deviation in

PSF Accuracy Distance Theta (deg) Phi (deg)

High 5% 1◦ 1◦

Ang Med 5% 2◦ 2◦

Ang Low 5% 4◦ 4◦

Dist Med 10% 1◦ 1◦

Dist Low 20% 1◦ 1◦

Table 5.3: Point-spread function parameters. Sampled data points are convolved with a PSF com-
posed of a gaussian distribution with the given standard deviations in distance, theta, and phi.

Table 5.4 shows little difference between the highest accuracy PSF, and mixed accuracy

ones; additionally, no additional trends are apparent as uncertainties increase. This suggests that

neither angular nor radial uncertainty is independently limiting in deciphering the underlying source

distribution. None-the-less, the sample will need to be significantly expanded–with many more data

sets, and both a broader range and higher resolution of accuracy models–to fully ascertain the

relative contribution to uncertainty from each degree of freedom. The benefits of adding a southern-

hemisphere based gravitational wave interferometer to the system is an active area of interest (e.g.

Barriga et al., 2010), and these factors should be better explored and taken into consideration.
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M360(D360) M180(D180) M90(D90)

PSF Accuracy vs. M180 vs. M90 vs. M360 vs. M90 vs. M360 vs. M180

High 27 17 34 > 1000 23 > 1000

Ang Mid 31 19 31 384 24 320

Ang Low 41 23 43 486 24 318

Dist Mid 25 18 27 > 1000 22 172

Dist Low 44 21 27 > 1000 24 208

Table 5.4: Number of detections required to achieve 99% confidence in the correct model for 90%
( 45
50 ) of data sets, using mixed detector accuracy models. Data was only sampled from 40 Mpc.

The different detector accuracies are detailed in table 5.1. Entries marked ‘> 1000’ never reached the
desired confidence in the 1000 data points for the required number of data sets.
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6 Discussion

In this paper, we use dark matter cosmological simulations to examine the full three-

dimensional distribution of coalescing compact binaries in the local universe under the following

assumptions. First, we assume a single epoch of star formation and a simple star formation recipe;

that is, the contribution of a particular halo to the total star formation is directly proportional to

its dark matter mass. Although, more realistic treatment of star formation should be considered, we

do not expect that our qualitative results will change significantly. Second, we assume an isotropic

natal kick velocity distribution, whose properties are invariant of initial binary separation. Under

this assumption, the merging time is independent of the kick velocity. This is found to be a reasonable

approximation in binary population synthesis models, which helps justify our single epoch of tracer

injection. Third, our comparisons between kick velocity models in §5 assume a perfect knowledge of

the local dark matter distribution, when in actuality this distribution would have to be deduced from

the observable, local universe. Finally, due to computational constraints, only an 80 Mpc region of

the expected 400 Mpc horizon of advanced LIGO/Virgo has been modeled. Despite the increased

uncertainty in the true-distance offset between host and merger at such distances, the difference

between our 40 and 80 Mpc results (Table 5.2) suggest that our methods could remain effective

in deducing the kick velocity distribution with a reasonable number of detections. Keeping these

assumptions in mind, it is still evident that the use of static, non-evolving potentials for individual

hosts at the time of binary formation severely overestimates the retention of all but the lowest

barycentric velocity systems (Fryer et al., 1999; Belczyński et al., 2000; Rosswog et al., 2003; Bloom
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et al., 1999; Bulik et al., 1999; Portegies Zwart & Yungelson, 1998).

Static calculations predict that the distribution of gravitational wave sources in the sky

should closely trace the distribution of galaxies. An accurate inclusion of evolving host halo potentials

in cosmological simulations have shown this to be inaccurate (Zemp et al., 2009). In fact, we show

that not only do the distributions of merging compact binaries extend well beyond their birth

halo, but variations in kick velocity lead to marked differences in their sky distributions. The

repercussions of this result are twofold. On one hand, we find that the variation in the projected

distribution of double compact objects with different natal kick-velocities should be distinguishable

with the expected accuracies of GW observatories. In principle, this will allow important information

on the formation and evolution of the binary progenitor to be deciphered from the distribution of

GW detections alone. On the other hand, the fact that the distribution of merging binaries does

not accurately trace the locations of their birth halos complicates redshift determination. Having

said this, the presence of a binary distribution extending well beyond the half-light radius of their

hosts suggests that associating optical counterparts to GW events could be easier as they are less

likely to be drowned out by their host galaxy’s light. This is particularly important as the optical

counterparts are predicted to be relatively dim (Li & Paczyński, 1998; Rosswog & Ramirez-Ruiz,

2002; Kulkarni, 2005; Metzger et al., 2010).

Gravitational waves offer the possibility of casting proverbial light on otherwise invisible

phenomena; they will–by their very nature–tell us about events where large quantitites of mass move

in such small regions that they are utterly opaque and forever hidden from direct electromagnetic

probing (see, e.g. Lee & Ramirez-Ruiz, 2007). A time-integrated luminosity of the order of a frac-

tion of a solar rest mass is predicted from merging compact binaries. Ground-based facilities, like

LIGO, GEO600 and Virgo, will be searching for these stellar mergers in the local universe. The

distribution of merger sites is thus of considerable importance to GW observatories. Using cosmo-

logical simulations of structure formation, the local sky distributions are found to vary with the

kick velocity distributions of the progenitor systems, allowing a determination of the cosmography
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of massive binary stars. Despite the fact that individual detections lack the positional accuracy of

electromagnetic observations, it may be possible to strengthen the case for (or against) high natal

kick velocities based solely on GW observations.
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Appendix A

A.1 Common Parameters

Name Symbol Value/Conversion

Solar Radius R⊙ 6.995× 108 m

Solar Mass M⊙ 1.989× 1030 kg

Astronomical Unit AU 1.496× 1011 m

Parsec pc 3.086× 1016 m
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A.2 Common Initialisms

Initials Term

BH Black Hole

CE Common Envelope

DBH Double Black Hole (binary)

DCO Double Compact Object

DM Dark Matter

DNS Double Neutron Star (binary)

GRB Gamma Ray Burst

GW Gravitational Waves

GWO Gravitational Wave Observatory

MS Main Sequence

MW Milky Way

NS Neutron Star

NS-BH Neutron Star - Black Hole (binary)

PSF Pount-Spread Function

SN(e) Supernova(e)
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A.3 Orbits

Consider two point-masses M1, and M2 in an orbit with semi-major axis a, eccentricity e,

and period P (also orbital frequency Ω = 2π
P ). Given the total mass of the system M = M1 + M2,

we can define the reduced mass as µ = M1M2
M . By Kepler’s third law

Ω2 =
�

2π

P

�2

=
GM

a3
(A.1)

which is to say, the angular frequency of the orbit (Ω) can be directly related to a. The average

relative velocity of the stars will be

V =
�

GM

a
(A.2)

We also have a total energy E, and orbital angular momentum J

E = −GM1M2

2a
(A.3)

J = µ

�
GMa(1− e2) (A.4)

In the center of mass frame, the angular velocity is given by

ω = r
−2

�
GMa(1− e2) (A.5)

If at some time, we say the stars M1 and M2 are located at �r1 = (r1 cos θ, r1 sin θ, 0) and

�r2 = (−r2 cos θ,−r2 sin θ, 0) respectively, with the x axis defined as zero when θ = 0 is at pericenter,

we can define the instantaneous separation between stars (r = |�r| = |�r1 + �r2|) as a function of θ:

r =
a(1− e

2)
1 + ecosθ

(A.6)
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ABSTRACT

Merging compact binaries are the most viable and best-studied candidates for gravitational-wave (GW) detection
by the fully operational network of ground-based observatories. In anticipation of the first detections, the expected
distribution of GW sources in the local universe is of considerable interest. Here we investigate the full phase-space
distribution of coalescing compact binaries at z = 0 using dark matter simulations of structure formation. The fact
that these binary systems acquire large barycentric velocities at birth (“kicks”) results in merger site distributions
that are more diffusely distributed with respect to their putative hosts, with mergers occurring out to distances of a
few Mpc from the host halo. Redshift estimates based solely on the nearest galaxy in projection can, as a result, be
inaccurate. On the other hand, large offsets from the host galaxy could aid the detection of faint optical counterparts
and should be considered when designing strategies for follow-up observations. The degree of isotropy in the
projected sky distributions of GW sources is found to be augmented with increasing kick velocity and to be severely
enhanced if progenitor systems possess large kicks as inferred from the known population of pulsars and double
compact binaries. Even in the absence of observed electromagnetic counterparts, the differences in sky distributions
of binaries produced by disparate kick-velocity models could be discerned by GW observatories, within the
expected accuracies and detection rates of advanced LIGO—in particular with the addition of more interferometers.

Key words: binaries: general – gravitational waves – stars: neutron
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1. INTRODUCTION

The merger of double compact objects represents the first
identified and most predictable source of gravitational-wave
(GW) radiation (e.g., Phinney 1991). Only recently have the
first GW observatories come online, and the first detection
events are expected in the next few years. Over the past three
decades the merger rate within the local universe has been
thoroughly examined (see, e.g., Abadie et al. 2010; Mandel
& O’Shaughnessy 2010 for recent reviews).

The merger rates are expected to be dominated by mergers of
neutron-star binaries, with 〈#〉 ∼ 1 Mpc−3 Myr−1. However,
these rates are significantly uncertain, since they come ei-
ther from extrapolations from the small observed sample of
Galactic binary pulsars whose luminosity distribution is not
well constrained or from population-synthesis models that have
many ill-determined parameters such as common-envelope effi-
ciencies. In particular, Abadie et al. (2010) estimate the con-
fidence bounds on the neutron-star binary merger rates as
# ≈ 0.01–10 Mpc−3 Myr−1. The horizon distances6 for the ini-
tial and advanced LIGO/Virgo detector networks are estimated
as D ∼ 30 and ∼400 Mpc, respectively, based on the distance
at which a single detector could detect GWs from a neutron-star
binary at a signal-to-noise ratio of 8. Abadie et al. (2010) es-
timate that the advanced LIGO/Virgo network could plausibly

5 NSF Astronomy and Astrophysics Postdoctoral Fellow.
6 The horizon distance is the maximum distance at which a signal can be
detected with a given signal-to-noise threshold (e.g., 8); for a single detector,
this is the distance at which gravitational waves from a face-on, overhead
binary can be detected.

detect between 0.4 and 400 neutron-star binaries per year, with
a likely rate of approximately 40 detections per year.

The prospects for detection and characterization of GW
sources are thus sensitive to the distribution of compact binaries
in the local universe. The fact that these systems must have
large systemic velocities at birth (Brandt & Podsiadlowski 1995;
Fryer & Kalogera 1997) implies that by the time they merge,
after approximately a Hubble time, they will be far from their
birth sites. The locations of merging sites depend critically on
the binary’s natal kick velocity and the temporal evolution of the
gravitational potential of the host halo and its nearby neighbors
(Zemp et al. 2009).

In this Letter, we study the evolving distribution of compact
binary systems from formation until coalescence at z = 0
using cosmological simulations of structure formation. This
allows us to examine the full radial and angular distributions
of merging compact binaries in the local universe. In Section 2,
we describe the numerical methods, initial setup, and the criteria
used to select a local-like universe. The distributions of compact
binaries at z = 0 are presented in Section 3 for three different
kick-velocity scenarios, and in Section 4 we examine the ability
of GW observatories to discern between them experimentally.
Finally, Section 5 discusses the implications of our findings.

2. METHODS AND INITIAL MODEL

2.1. Simulation

The focus of this work is to understand the distribution
of compact binaries in the local universe using cosmological
simulations. To this end, we have performed a dark matter (DM)
only cosmological structure formation simulation following the
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numerical procedure outlined in Zemp et al. (2009). A comoving
80 Mpc periodic box is initialized at redshift z = 22.4 (161
Myr) and uses WMAP3 cosmological parameters (Spergel et al.
2007). The initial conditions are evolved using the parallel tree
code PKDGRAV2 (Stadel 2001) until z = 1.60 (4.24 Gyr).
At this time, we populate each halo with mass greater than
2.15×1011 M" (of which there are 2461 in the simulation) with
2000 massless tracers.

Each tracer particle is meant to represent a compact binary
system, which, on average, forms around the peak of the
star formation epoch (Madau et al. 1996, 1998). In general,
the local merger rate is given by the convolution of the star
formation rate with the probability distribution of the merging
time delays. Compact binaries formed at the peak of the
star formation history, merging after delays consistent with
the orbital separations of known relativistic binary pulsars
(O’Shaughnessy et al. 2008), dominate the local merger rate.7

Tracers are injected into the center of their halo, with an
isotropic Maxwell-Boltzmann velocity distribution with mean
speeds v̄ = 360, 180, and 90 km s−1 and dispersions σ = 150,
75, and 37.5 km s−1 (hereafter denoted as models M360, M180,
and M90). This is consistent with the magnitude of the natal kicks
required to explain the observed parameters of binary neutron
star systems (Brandt & Podsiadlowski 1995; Fryer & Kalogera
1997)—only when the center of mass kicks have magnitudes
exceeding 200 km s−1 can the progenitor orbits be sufficiently
wide to accommodate evolved helium stars and still produce the
small separations measured in these systems.

The contribution of individual tracers to the overall population
is weighted linearly with their progenitor halo’s mass (at
z = 1.6) in all of our calculations.

Finally, the cosmological box together with the tracer particle
populations are evolved until redshift z = 0 (13.8 Gyr). This
results in diverse predictions of compact binary demographics at
z = 0 in the case of an isotropic kick-velocity distribution whose
properties are invariant to initial binary separation. Merger
times in population-synthesis models are found to be relatively
insensitive to the initial kick velocity (e.g., Bloom et al. 1999).
This not only justifies our assumption but, when taken together
with the progenitors’ long time delays (O’Shaughnessy et al.
2010), also reinforces the validity of a single injection time.

2.2. Local-like Universe Selection

Once the tracers and DM are evolved to z = 0, a local-like
universe is selected based on the following criteria (adapted
from Hoffman et al. 2008).

1. There are two DM halos, representing the Milky Way
and Andromeda pair, with maximum circular velocities
Vc ∈ [125, 270] km s−1.

2. These halos are separated by d ! 1.4 h−1 Mpc, and
approaching each-other (i.e., ḋ ! 0.0 km s−1).

3. There is a Virgo-like halo at a distance d ∈ [5, 12] h−1 Mpc,
with Vc ∈ [500, 1500] km s−1.

4. No halos with comparable or higher maximum circular
velocities than either of the pair exist within 3 h−1 Mpc,
and no other Virgo-like halos exist within 12 h−1 Mpc.

The first three constraints resulted in three local-like groups.
Inclusion of the fourth criterion resulted in a single, optimal
environment for our analysis.

7 For P (τ ) ∝ 1/τ this early-assembled population could increase the local
event rate by at least ∼3 (Guetta & Piran 2005).

3. THE LOCAL DISTRIBUTION OF COMPACT BINARIES

We now examine the local, three-dimensional distribution of
merging compact binaries—characterized here by the massless
tracer particle population at z = 0 centered on the Milky Way
like galaxy. Figure 1 shows the radial distribution of tracers and
DM within our local-like universe. In models M180 and M90,
tracer particles closely follow the DM central-density peaks,
just like the galaxies themselves in cold dark matter (CDM)
cosmology (Blumenthal et al. 1984).

As the kick velocity becomes comparable to the escape
velocity of the progenitor halos, an increasing fraction of tracers
escape. These unbound tracers form an intergalactic background
which closely follows the overall DM distribution, as seen
for model M360 in Figure 1. In super-galactic regions with
more continuous gravitational potentials, the tracer background
becomes more heavily populated. The relative isolation of
the Milky Way–Andromeda pair contributes to the enduring
presence of strong native tracer peaks located at each halo
center. As a result, the extended background distributions of
tracers—centered on the pair—are only apparent in the highest
kick-velocity model.

As seen in Figure 2, the number of tracers within a sphere en-
compassing the Milky Way and Andromeda halos is noticeably
depleted at higher kick velocities. At these velocities, the host
halos are unable to effectively retain most of their tracers. As
the sphere’s volume approaches the Virgo cluster, the number of
(sub)halos becomes so large that the mean separation between
central peak densities decreases below the characteristic size of
the background tracer population. As a result, the variation with
kick velocity in the tracer distributions is drowned-out. It should
be noted that the expected event rate in such a small volume is
negligible (Abadie et al. 2010); thus the effects of varying kick
velocity will be indiscernible in the integrated merger-rate of
compact objects within LIGO/Virgo detection horizons.

Although the integrated tracer distribution is insensitive to
the model, the angular distribution of tracers depends strongly
on the binary’s kick velocity. This is evident in Figure 3, which
plots sky maps of tracers and DM within a given volume. As
expected, high velocity kicks lead to more pronounced isotropies
when compared to the low kick scenarios. At 10 Mpc, ∼40%
of the M360 weighted tracers lie in pixels outside those of
M90; this fraction falls to 15% and 10% for 40 and 80 Mpc,
respectively. This trend results from the increasing isotropy of
DM in projection at progressively larger scales.

For large velocities, the distribution of GW sources forms a
sky continuum (Figure 3) rather than well-isolated substruc-
tures—complicating host galaxy identification and thus red-
shift determination. On the other hand, with large kick veloc-
ities the majority of mergers will take place well outside the
host galaxy’s half-light radius, aiding the detection of photonic
counterparts—especially at optical wavelengths.

4. PREDICTIONS FOR GRAVITATION WAVE
OBSERVATIONS

The number of detections required for GW observatories to
be able to reconstruct the kick-velocity distribution is examined
here. Timing triangulation from relative GW phase shifts8

between widely separated detectors is the primary source
of sky localization (Fairhurst 2009), and Fisher matrix or
Markov Chain Monte Carlo techniques can be used to compute

8 For a review of GW emission from compact binaries see Hughes (2009).
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Figure 1. Tracer vs. dark matter distribution in a local-like universe as a function of barycentric kick velocity. Integrated particle mass in uniform radial-width shells
is plotted vs. distance from a solar-equivalent offset from the Milky Way center. The vertical axes are plotted in arbitrary units of number per unit length, with tracers
normalized with respect to the total population as described in Section 2.1. As the kick velocity increases from 90 km s−1 (top panel) to 360 km s−1 (bottom panel), a
noticeable portion of tracers becomes delocalized.
(A color version of this figure is available in the online journal.)

Figure 2. Cumulative distribution of tracers and dark matter as a function of
kick velocity. The vertical axes are plotted in arbitrary units of number per unit
volume, with tracers normalized. Although the number of tracers in the central
halo is noticeably lower for the highest kick-velocity model, the difference is
negligible once the volume reaches the Virgo-like cluster.
(A color version of this figure is available in the online journal.)

error estimates (van der Sluys et al. 2008). The intricacies of
parameter determination and error estimation can be extensive,
as correlations between waveform parameters mean that some
parameters (such as distance and inclination) are partially
degenerate (see, e.g., Cutler & Flanagan 1994, and references
therein). Typically, with a three-detector network, the distance
to the GW event could be determined to within a ∼20%–50%
uncertainty, and the angular location of the event to ∼5–50
square degrees, depending on source location, masses, and
signal-to-noise ratio (Fairhurst 2009; van der Sluys et al. 2008).

The large uncertainty in the distance determination can be
understood when considering its dependence on the signal
amplitude, which is much more uncertain than the phase-space
information.

To estimate the number of events required to distinguish
between different kick-velocity models, we apply a Bayesian
approach similar to that used by Mandel (2010) to approximate
the efficacy of population reconstruction from GW signals.
Data sets Dj ∈ D360,D180, and D90 are drawn from each
model Mi ∈ M360,M180, and M90, respectively. Each data
set contains n independently drawn data points (i.e., tracers),
characterized by three position coordinates; i.e., Di(n) =
[xi,1(r,α, δ), xi,2(r,α, δ), . . . xi,n(r,α, δ)]. The probability of a
tracer being selected for a given data set is linearly proportional
to the halo mass of the progenitor (see Section 2.1). The
probability that a particular model i fits a data set j can be
rewritten using Bayes’ formula:

P (Mi |Dj (n)) = P (Dj (n)|Mi) · P (Mi)
P (Dj (n))

. (1)

Throughout our analysis we assume flat priors [P (Mi) =
P (Mj )], and equivalent evidence [P (Di) = P (Dj )]. A compar-
ison between models then yields

P (Mi |Di(n))
P (Mj |Di(n))

= P (Di(n)|Mi)
P (Di(n)|Mj )

=
n∏

k=1

P (xi,k|Mi)
P (xi,k|Mj )

, (2)

where the probability of a particular data point given a specific
model, P (xi,k|Mj ), is described by the convolution of the point-
spread function (PSF–S) of the detector with the probability
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Figure 3. Sky maps of dark matter and tracers with highest and lowest kick-velocity scenarios as a function of distance. Dark matter and normalized-tracer column
densities are scaled independently and logarithmically (in 2◦ × 2◦ bins), with white pixels corresponding to densities less than the resolution of the simulation.
Although tracer peak densities remain relatively unchanged, a strong tracer-background forms as the kick velocity approaches the escape velocity. Differences in tracer
distributions are clearly apparent.
(A color version of this figure is available in the online journal.)

Table 1
Number of Detections Required to Achieve 99% Confidence in the Correct Model for 90% ( 45

50 ) of Data Sets

Dist PSF Accuracy M360(D360) M180(D180) M90(D90)

vs. M180 vs. M90 vs. M360 vs. M90 vs. M360 vs. M180

High 22 16 26 >1000 22 282
!80 Mpc Med 73 39 35 >1000 31 384

Low >1000 349 52 >1000 50 881

High 27 17 34 >1000 23 >1000
!40 Mpc Med 78 46 40 >1000 37 >1000

Low 146 137 56 >1000 56 >1000

Notes. These results are compared between two different sample radii, and three different detector accuracies characterized by standard
deviations (in distance, right ascension, declination) of: σhigh = {5%, 1◦, 1◦}, σmed = {30%, 2◦, 2◦}, σlow = {50%, 4◦, 4◦}. Entries
marked “>1000” failed to reach the desired confidence in the required number of data sets within the 1000 data points used.

distribution function of the model in question. That is

P (xi,k|Mj ) =
q∑

l=1

S(xi,k|pixell) · P (pixell|Mj ), (3)

where the sum is being performed on each pixel (pixell) for all
q pixels.

The PSFs are assumed here to be Gaussian in each coor-
dinate direction, characterized by standard deviations in dis-
tance, right ascension, and declination: σhigh = [5%, 1◦, 1◦],
σmed = [30%, 2◦, 2◦], σlow = [50%, 4◦, 4◦]. These reflect differ-
ent assumptions for the high, medium, and low accuracy of po-
sitional reconstruction for GW detections. The exact parameter-
estimation accuracy is difficult to predict, since it will depend

both on the details of the detector network (e.g., the relative
sensitivity of detectors and their calibration accuracy) and on
the specifics of individual events (their signal-to-noise ratio, and
the sky location and binary orientation). Therefore, these three
assumptions should be considered only as possible predictions
for typical accuracies. Thus, low accuracies may be typical for
events detected with a three-detector LIGO/Virgo network at the
threshold of detectability. Meanwhile, the addition of a fourth
interferometer, such as a possible AIGO detector in Australia
or LGCT in Japan, could significantly enhance the sky localiza-
tion accuracy and moderately improve distance sensitivity (S.
Fairhurst et al. 2011, in preparation), making medium-accuracy
measurements typical and high-accuracy measurements
possible.
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In these calculations, we compare hypothetical GW observa-
tions with models of compact binary distributions. This com-
parison is being made assuming that the local DM distribution
is perfectly known. In reality, this is not the case; and the results
presented here are thus optimistic. In the future, the comparison
between model and observation should be refined to include the
local distribution of light (e.g., galaxies) rather than DM halos.

Table 1 summarizes the ability of GW observatories to discern
the kick-velocity distribution of the merging binaries from the
reconstructed angular positions and distances (assumed to be
determined without a galaxy host association). Sample volumes
of 40 and 80 Mpc are considered in order to understand the
sensitivity of our results to the uncertainty in physical separation
which, for a fixed angular resolution, varies with distance.
We find that ∼50 events are required to distinguish between
the lowest and highest kick-velocity scenarios for moderate
detector accuracies, irrespective of sample volume. For low
detector accuracies, 50–350 detections are necessary.9 Thus,
a distinction between the two extreme models is possible once
advanced detectors come online, with an expected event rate
of ∼40 per year for detections of binary neutron-star mergers
(Abadie et al. 2010).10 Meanwhile, distinguishing between the
two low-kick scenarios is very difficult, if not impossible, until
the era of third-generation detectors. The addition of a fourth
GW detector to the LIGO/Virgo network would significantly
improve source localization, and thereby the accuracy with
which event distributions could be distinguished.

Assuming a LIGO/Virgo horizon of ∼400 Mpc, only ∼10%
of all detected mergers would take place within 80 Mpc. With a
constant angular resolution, the uncertainty in physical position
is proportional to the event’s distance, suggesting that using
events at greater distances leads to a degradation in the ability
to distinguish between kick-velocity models. Although we find
no clear increase in the number of required detections between
the 40 and 80 Mpc samples, further investigation is required to
assess the effects of a larger sample volume.

5. SUMMARY

In this Letter, we use DM cosmological simulations to
examine the full three-dimensional distribution of coalescing
compact binaries in the local universe under the following
assumptions. First, we assume a single epoch of star formation
proportional to the progenitor DM halo’s mass. Although a
more realistic treatment of star formation should be considered,
we do not expect that our qualitative results will change
significantly. Second, we assume an isotropic natal kick-velocity
distribution, whose properties are invariant of initial binary
separation. This is found to be a reasonable approximation
in binary population-synthesis models, which helps justify our
single epoch of tracer injection. Third, our comparisons between
kick-velocity models in Section 4 assume a perfect knowledge
of the local DM distribution. Finally, due to computational
constraints, only an 80 Mpc region of the expected 400 Mpc
horizon of advanced LIGO/Virgo has been modeled. Despite
the increased uncertainty in the true-distance offset between host
and merger at such distances, the difference between our 40 and
80 Mpc results (Table 1) suggests that our methods could remain

9 It is important to note that the number of detections required is highly
sensitive to the model from which the data is drawn, not simply on which
models are being contrasted.
10 The event rate estimates have significant uncertainties, and range from
pessimistic estimates of ∼0.4 events per year to optimistic estimates of ∼400
events per year (Abadie et al. 2010).

effective. Keeping these assumptions in mind, it is still evident
that the use of static, non-evolving potentials for individual
hosts at the time of binary formation severely overestimates the
retention of all but the lowest barycentric velocity systems (Fryer
et al. 1999; Belczyński et al. 2000; Rosswog et al. 2003; Bloom
et al. 1999; Bulik et al. 1999; Portegies Zwart & Yungelson
1998).

In contrast to static calculations, we show that not only
do the distributions of merging compact binaries extend well
beyond their birth halo, but variations in kick velocity lead to
marked differences in their sky distributions. As a result, we find
that double compact objects with different natal kick velocities
should be distinguishable with the expected accuracies of GW
observatories. In principle, this will allow important information
on the formation and evolution of the binary progenitor to be
deciphered from the distribution of GW detections alone. On the
other hand, the fact that the distribution of merging binaries does
not accurately trace the locations of their birth halos complicates
redshift determination. Having said this, the presence of a
binary distribution extending well beyond the half-light radius
of their hosts suggests that associating optical counterparts to
GW events could be easier as they are less likely to be drowned
out by their host galaxy’s light. This is particularly important
as the optical counterparts are predicted to be relatively dim (Li
& Paczyński 1998; Rosswog & Ramirez-Ruiz 2002; Kulkarni
2005; Metzger et al. 2010).

GWs offer the possibility of casting proverbial light on other-
wise invisible phenomena; they will—by their very nature—tell
us about events where large quantities of mass move in such
small regions that they are utterly opaque and forever hidden
from direct electromagnetic probing (see, e.g., Lee & Ramirez-
Ruiz 2007). Ground-based facilities, such as LIGO, GEO600,
and Virgo, will be searching for these stellar-remnant mergers
in the local universe. The distribution of merger sites is thus
of considerable importance to GW observatories. The proposed
use of galaxy catalogs as priors when passing triggers from
possible GW detections to point telescopes for electromagnetic
follow-ups will need to account for the possibility of mergers
away from observed galaxies. Despite the fact that individual
GW detections lack the positional accuracy of electromagnetic
observations, determination of the cosmography of massive bi-
nary stars is still possible based solely on GW observations. The
addition of more GW detectors to the LIGO/Virgo network will
greatly improve our ability to distinguish between models with
different kick-velocity distributions by improving the positional
reconstruction of individual events.
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E.R.), AST-0708087 (M.Z.), AST-0901985 (I.M.); and the
Swiss National Science Foundation (J.D.). Computations were
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