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Abstract

Evolution of Blister-Type HII Regions in a Magnetized Medium

by

Leo Gendelev

We use the three-dimensional Athena ionizing radiation-magnetohydrodynamics

(IRMHD) code to simulate blister-type HII regions driven by stars on the edge of magnetized

gas clouds. We compare these to simulations of spherical HII regions where the star is

embedded deep within a cloud, and to non-magnetized simulations of both types, in order

to compare their ability to drive turbulence and influence star formation. We find that

magnetized blister HII regions are very efficient at injecting energy into clouds. This is partly

a magnetic effect: the magnetic energy added to a cloud by an HII region is comparable

to or larger than the kinetic energy, and magnetic fields can also help collimate the ejected

gas, increasing its energy yield. As a result of these effects, a blister HII region expanding

into a cloud with a magnetic field perpendicular to its edge injects twice as much energy

by 5 Myr as a non-magnetized blister HII region driven by a star of the same luminosity.

Blister HII regions are also more efficient at injecting energy than spherical HII regions, due

to the recoil provided by escaping gas, but not by as much as predicted by some analytic

approximations.
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1

Introduction

Molecular Gas Clouds (MGCs) were first discovered not by their beautiful com-

plexity but by their dark simplicity. In 1774, Sir William Herschel noticed a dark void in

space and famously proclaimed, “Truly there must be a hole in the sky!” This marked the

discovery of MGCs. Eventually, with the advent of infrared and radio telescopes, the true

nature of these MGCs became evident. They were not voids in space but vast clouds of

interstellar dust and gas, absorbing light from the stars behind them. Thousands of these

clouds, predominately situated in the spiral arms of the Milky Way, have been discovered

to date - collapsing under their own weight to form stars. The study of MGCs continues to

be an active area of research in astrophysics because the detailed physics governing them is

poorly understood.

MGCs evolve over a time scale of millions of years, so the only observational

data we can obtain are snapshots of how MGCs look at certain points in their evolution.

This is further complicated by the difficulties involved in observing the fine structure of

MGCs, which is why computer simulations are crucial in helping us in the construction
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of complete and accurate physical models of the evolution of MGCs and star formation.

We can test a simple model against the result of a high resolution simulation by comparing

certain features of the MGC at different times. But we must start out from simple, idealized

setups before we can achieve a better understanding of the more realistic scenario, involving

an initially turbulent medium, magnetic fields, feedback from massive stars, gravitational

collapse, completely accurate chemistry and thermal interactions, and so on.

1.1 Ionization Fronts

In general, ionization fronts are formed when massive stars are born within molec-

ular gas clouds. The strong radiation almost instantaneously ionizes the gas in the stars’

immediate surroundings, and heats it up as much as 1000–fold. This leads to a large jump

in pressure which in turn leads to a pressure-driven expansion into the neutral medium

in the form of a shell of swept up gas. At first this expansion is highly supersonic due

to the steep pressure gradient across the ionization front. However, eventually the rate of

recombinations inside the HII region balances the rate of ionizations – due to geometric

dilution – at which point the front ceases to be super-sonic with respect to the ionized

region and undergoes a transition from “R-type” to “D-type”. The shell’s radius at this

time is approximately equal to the Stromgren radius, which is defined as:

rs =

(
3sµ2H

4πα(B)ρ2

)1/3

, (1.1)

where s is the ionizing luminosity of the star, µH and ρ are the mean mass per hydrogen

atom and the density of the gas, respectively, and αB is the recombination coefficient. The

time at which the transition occurs is known as the Stromgren time, equal to rs divided by
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the sound speed in the ionized gas,

ts = rs/cII . (1.2)

The D-type front will continue to expand supersonically with respect to the ambient neutral

medium for millions of years, leaving behind an increasingly large HII region.

HII regions have important implications for the global evolution of MGCs. Ioniza-

tion fronts can disrupt parts of the MGC, preventing them from gravitationally collapsing

to form stars. At the same time they can also cause the formation of over-dense clumps

with an increased rate of star formation, especially when combined with MHD turbulence

(§1.5). It is likely that HII regions lower the global rate of star formation in MGCs since

much of the neutral gas that could collapse to form stars is swept up into a thin shell or

driven off the cloud in an ionized wind. Nonetheless HII regions can have both a positive

and negative influence on star formation rates in MGCs.

1.2 Blister HII Regions

In this paper we are particularly interested in the blister-type HII region. A

sketch adopted from Krumholz & Matzner (2009) is shown in Fig. 1.1 comparing blister

and symmetric HII regions.
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Figure 1.1: A sketch comparing the blister and symmetric HII regions (Krumholz &

Matzner, 2009).

In the blister-case the star is situated next to the edge of the MGC, so the ionization

front will eventually reach the edge of the cloud and burst a hole through which hot ionized

gas will be able to stream out at extremely high velocities into the low-density ISM. In

contrast with the symmetric case, the ionized gas within the HII region is not confined to

the HII region, leading to a phenomenon known as the rocket effect which increases the

expansion rate of the ionization front.

To understand this effect it is first important to note that as the D-type ionization

front travels through the MGC, it sweeps up neutral gas since it travels above the neutral

sound speed c0. As a result the density within the shell is higher than its surroundings.

At the ionized inner edge of the shell, the gas pressure therefore exceeds that in the lower

density ionized gas closer to the star. Thus there will be a pressure-driven movement of

gas away from the shell. This movement will be in the negative r̂ direction, that is, in the

direction opposite to the one in which the ionization front is expanding. This movement is
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less restricted in the blister-case, since the gas is not confined to the HII region, so more gas

can accelerate off of the ionization front, and analogously to a rocket traveling in air, more

force is applied to the ionization front. Hence the ionization front will expand faster in the

blister-case than in the spherically symmetric case, and consequently we would expect the

kinetic energy to be higher as well.

1.3 Shell Radius

The radius of the shell as a function of time can be derived using conservation of

momentum and some simplifying assumptions. If we assume that the pressure inside the

HII region is vastly dominant over the ambient pressure in the neutral gas into which it is

expanding at all times, and that the density within the HII region is approximately uniform,

then we can obtain an equation of motion for the shell from momentum conservation. This

equation of motion can then be solved by using a power-law similarity solution. We provide

a derivation for both the symmetric and blister cases in Appendix A. In Spitzer (1978) there

is a derivation of the symmetric case performed in a slightly different way, yielding a very

similar solution. The solutions we find for the two cases differ only by a factor of 22/7, and

are provided below:

rsh = rs

(
7t√
12ts

)4/7

(spherical), (1.3)

and

rsh = rs

(
7t√
6ts

)4/7

(blister). (1.4)

How valid are the approximations we use? In reality, even though the assumption that the

ambient pressure is negligible in comparison with the pressure inside the HII region is quite

accurate at early times, the HII region internal pressure decreases as the HII region expands,
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and so it becomes less accurate. Furthermore, even though the assumption that the density

is uniform within the HII region for the symmetric case is valid, it is not necessarily quite as

true for the blister-case where gas is free to stream out of the HII region into the interstellar

medium. Hence the radius as a function of time will likely not match the analytic solution

perfectly for all times, especially for the blister-case. In §3.3.1 we perform some calculations

with our simulation data to see how pronounced these innacuracies in the analytic solution

due to these approximations might be.

1.4 The Effect of Magnetic Fields

Magnetic fields are ubiquitous in molecular gas clouds. This is to be expected since

a small fraction of the total atoms in MGCs are ionized, which gives rise to magnetic fields

since moving charged particles produce a magnetic field. But what are the effects of adding

in Magnetohydrodynamics into the model? Magnetic field lines resist being stretched, due

to the Lorenz force, so we would expect them to restrict the expansion of the HII region

in the direction perpendicular to them. This restriction would lower the kinetic energy

imparted to the molecular gas cloud by the HII region. At the same time, MGCs have

magnetic energy comparable to their kinetic energy (Crutcher, 1999), so it is important to

look at the total energy in the cloud (kinetic plus magnetic) to understand how HII regions

affect their turbulence and evolution. It is likely that although the magnetic fields limit

the kinetic energy of the cloud in the MHD simulations, the total energy will actually be

greater than for their non-MHD counterparts.

However, the addition of magnetic fields adds another layer of complexity to the

analysis. Even though the expansion of the ionization front will be suppressed perpendicular
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to the magnetic field lines, there will be MHD waves which can outrun the dense shell. In

general there are three types of MHD waves: the slow magnetosonic wave, the Alfven wave,

and the fast magnetosonic wave. The fast magnetosonic wave is formed due to the magnetic

field lines acting as a restoring force in a direction perpendicular to them. Just as in the

harmonic oscillator, this restoring force coupled with a density fluctuation moving across

the magnetic field lines can give rise to a wave, with a velocity given by vf =
√
v2A + c2s,

where vA = B/
√
µ0ρ is the Alfven velocity and cs =

√
kP/ρ0 is the sound speed of the

neutral gas.

Initially the D-type ionizination front is highly supersonic, but over time it can slow

down enough that the fast magnetosonic wave will outrun it, disturbing neutral gas ahead

of the ionization front, so that there is swept up material in between the fast magnetosonic

disturbance and the ionization front. This has important implications for our results, as we

discuss in Chp. 3.

Finally in the blister case the magnetic field lines act to guide the gas being ejected

as it is photoionized, increasing the impulse it delivers to the cloud as it rockets away. In

the symmetric case the gas is confined within the HII region and cannot rocket away, so

this effect does not apply. Hence we would expect the kinetic energy for the blister MHD

shell to be higher than for the symmetric MHD shell.

1.5 Magnetohydrodynamic (MHD) Turbulence

MGCs contain overdense regions within which stars form. These overdense regions

can form due to magnetohydrodynamic turbulence, which provides density fluctuations,

changing the balance between gravity and pressure within the cloud, and leading to localized
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gravitational collapse (Stone et al., 1998). MHD turbulence is ubiquitous amongst MGCs,

but what gives rise to it is poorly understood and is still an open research question. One

mechanism that has been proposed is ionizing radiation (e.g., Gritschneder et al. 2009). We

know that it takes about 2 crossing times for the turbulence to be dissipated (McKee &

Ostriker, 2007), so the total energy produced by the ionization front must be comparable

within this timescale to be able to counteract the dissipative forces and drive the turbulence.

It is therefore important to study the efficiency with which HII regions are able to inject

energy into GMCs.

1.6 Previous Studies and the Purpose of Our Research

In this paper we build on previous work by Krumholz & Stone (2007), which was

the first study of the expansion of an HII region into a magnetized gas. The work we present

here expands this effort to include blister-type HII regions, which form when an ionizing star

is situated towards the edge of the MGC. There has been significant numerical research done

on HII regions in recent years, but most of this research involved simplifying assumptions

which lead to physically unrealistic results. However, following the work of Krumholz &

Stone (2007), we include not only MHD in our simulations, but also radiative transfer, and

we do not assume that the ionized gas is always in thermal or ionization equilibrium. The

magnetic energy in MGCs is known to be comparable to the thermal and kinetic energies,

and in §3.3.4 we will show that including a magnetic field has dramatic consequences for

the total energy provided to the cloud by the HII region.

There have been several recent papers involving HII regions in a turbulent medium

(e.g. Gritschneder et al. 2009 and Arthur et al. 2011). They produced results that looked
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similar to observed features of HII regions, such as the prominent pillar-like structure of

the Eagle Nebula. In our work we do not assume an initially turbulent medium – we are

more interested in analyzing how efficient the different kinds of HII regions are at driving

turbulence in the first place. Our work is therefore complementary to that of Gritschneder

and Arthur.
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2

Computational Methodology

The simulations are performed using the Athena 3D MHD code (Stone et al.,

2008). Athena is a grid-based, static mesh refinement (SMR) code designed for simulating

various Astrophysical MHD processes. It uses higher order Godunov methods, which are

particularly efficient when used with static or adaptive mesh refinement, in combination with

the constrained transport technique, which is used to ensure that the magnetic divergence is

preserved to machine precision. In addition, to handle the ionizing radiation, we employ the

radiation scheme first introduced in Krumholz & Stone (2007). We run all simulations on

the Pleiades cluster at UCSC at 2563 resolution using 64 processors for an average wall-time

of 3 days per simulation.

2.1 The Ideal MHD Equations

Athena solves the equations of ideal MHD. In conservative form, they are:
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∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂

∂t
(ρv) +∇ · (ρvv−BB) +∇P ∗ = 0 (2.2)

∂B

∂t
+∇ · (vB−Bv) = 0 (2.3)

∂E

∂t
+∇ · [(E + P ∗)v−B(B · v)] = G − L (2.4)

∂ρn
∂t

+∇ · (ρnv) = R− I (2.5)

∇ ·B = 0, (2.6)

where ρ is the density and v is the velocity of the gas, B is the magnetic field, P ∗ =

P+(B·B/2) is the total pressure, P is the gas thermal pressure, E is the total energy density,

and ρn is the density of the neutral gas. Equation 2.1 is the continuity equation (conservation

of mass), 2.2 is the conservation of momentum, where we have used the approximation that

our fluid has no viscosity (ν = 0), 2.3 is Faraday’s law, or the induction equation, where

we have set the magnetic diffusivity to zero (η = 0) since we are approximating that the

magnetic field is frozen into the fluid, 2.4 is the conservation of energy equation, where

G and L are the radiative heating and cooling terms, respectively, 2.5 is the continuity

equation for neutral gas, and says that a change in the mass of neutral gas can only come

through advection into other cells or through recombinations (R) and ionizations (I), and

2.6 comes from the non-existence of magnetic monopoles (it says that the magnetic field is

divergence free). The heating and cooling terms, G and L, will be discussed in more detail

in §2.6.
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2.2 Problem Setup

We set up a rectangular grid which runs from -25.0 to 25.0 pc in all 3 directions.

For the spherical case, we place the star at the center of the grid, with (x, y, z) = (0, 0, 0),

and assume a constant background density of n = 63.0 atoms cm−3 across the whole

domain. For the blister-type runs, we split the grid into two halves: all cells with x < 0

are of higher density, nleft = 63.0 atoms cm−3, while all cells with x > 0 are of a low

density, nright = 0.055 atoms cm−3, in order to put the two halves into pressure balance

given the heating and cooling functions we are using, and we place the star at the center of

the grid (at the boundary between the two regions). For the spherical MHD and the blister

MHD runs we thread the initial magnetic field through the domain in the x̂ direction. In

addition, we perform one blister-type run with the initial magnetic field at 45◦ to the x axis

and finally one run with the magnetic field in the ŷ direction. In all MHD runs, the initial

magnetic field is B0 = 3.0× 10−6 in the code units, which differ from cgs units by a factor

of
√

4π, so that in cgs it is
√

4π(3.0× 10−6)µG = 10.6µG. A summary of the various runs

and their magnetic field orientation is provided in Tab. 2.1.

A note on the blister type HII region setup: in reality it would clearly be a co-

incidence if the star was positioned right on the edge of the cloud. In reality blister HII

regions are likely to form when a star is close to, but not directly on, the edge of the cloud.

However ours is an instructive limiting case, since it is much harder to interpret and make

sense of computational data that would result from a more realistic setup. It would be

useful to extract as much information as possible from our idealized setup, and in a later

paper expand our investigation to compare to the more realistic scenario.
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Table 2.1: Problem Setup

Simulation Name Type Magnetic Field Setup

Hydro Symmetric None
MHD Symmetric x̂ direction
Blister-hydro Blister None
Blister-mhd Blister x̂ direction
Blister-mhd-vert Blister ŷ direction
Blister-mhd-45 Blister At 45◦ to the x̂ direction

2.3 Configuration Parameters

The parameters relevent to our problem required to configure Athena so as to

reproduce our results are summarized in Tab. 2.2. We refer the reader to the Athena

manual for details. We configure Athena with the Roe solver based on the Godunov scheme

in conjunction with the ctu integrator to produce the most accurate results, and we enable

h-correction in order to eliminate carbuncle problems. The finite resolution of the grid

produces extra viscosity on motions unaligned with the grid, so h-correction helps in that it

adds an artificial viscosity along the grid to counterbalance this effect. We resort to using

first order fluxes because higher order fluxes proved unstable at 2563 resolution in at least

some of our runs. Ionizing radiation is enabled and ion point is selected since we treat this

star as a point source.
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Table 2.2: Configuration Parameters

Prefix Parameter Value

with flux roe
with integrator ctu
with order 1
with gas hydro or MHD
with eos adiabatic
enable mpi
enable h-correction
enable ion point
enable ion radiation

2.4 Ionizing-Radiation Parameters

The parameters required to ensure that the time-step is not too large, and to treat

the rays appropriately, are presented in Tab. 2.3. The details are described in Krumholz

& Stone (2007). One simplifying technique we employ in treating the rays is known as

the “on-the-spot” approximation (Osterbrock, 1999). In an optically thick medium, pho-

tons are absorbed almost instantaneously (or “on-the-spot”) after being generated during

recombination. Hence it is a good approximation to just have the effects of emission and ab-

sorption cancel each other out rather than having to push the re-emitted photons through

the ray-tracing algorithm – which would significantly increase computational time. It is

possible that the non-uniform density profile of the blister HII region (discussed in §1.3)

can alter how accurate the “on-the-spot” approximation is (either in a positive or negative

way), but we do not investigate either possibility in this paper.
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Table 2.3: Ion-Radiation Parameters

Parameter Value

time unit 1.0
max de iter 0.1
max de therm iter 0.1
max de step 10.0
max de therm step 10.0
max dx iter 0.1
max dx step 10.0
tfloor 10.0
tceil 1.0× 106

maxiter 100
ray number 2
min tree level 2
rebuild interval 5

2.5 Physical Parameters

The following parameters are all adopted from Krumholz & Stone (2007) and

summarized in Tab. 2.4. We set the photoionization cross section to σph = 6.3× 10−18cm2,

which is the cross section for absorption of a photon at ionization threshold by a neutral

hydrogen atom. The mean mass per hydrogen atom is µH ≈ 2.34× 10−24 g, and the mean

particle mass in the neutral gas is µ = 2.1× 10−24 g, appropriate for atomic gas.

Table 2.4: Physical Parameters

Parameter Value

σph 6.3× 10−18cm2

µH ≈ 2.34× 10−24g
µ 2.1× 10−24g
αc 3.0× 10−3

αB 2.59× 10−13(T/104K)−0.7 cm−3s−1

eγ 3.84× 10−12ergs
c0 5.74× 104cm/s
cII 8.7× 105cm/s
nleft 0.63 atoms cm−3

nright 0.055 atoms cm−3

B0 10.6µG
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The carbon number fraction is αc = 3.0×10−3 (and we assume all carbon is singly

ionized since its ionization potential is less than that of hydrogen). The energy yield per

photoionization is eγ = 3.84× 10−12 ergs. The speed of sound in the dense half of the grid

is c0 = 5.74× 104 cm/s and c0 = 6.14× 105 cm/s in the low density half, while in the HII

region it is cII = 8.7× 105 cm/s (Krumholz & Stone, 2007).

2.6 Heating and Cooling

The main source of heating in our simulation is due to photoionization of hydrogen

by ionizing radiation. The photoionization rate summing over all sources is given by

Gph = σphnH
∑
n

sn
4π|x− xn|2

e−τ(x,xn) (2.7)

(Krumholz & Stone, 2007), where nH , the number density of hydrogen, and σph are from

table 2.4, sn is the ionizing luminosity of the nth star, x is the position where the ionization

is taking place, xn is the position of the nth source, and τ is the optical depth to ionizing

photons between x and xn, given by

τ(x,xn) =

x∫
xn

(σphnH) dl. (2.8)

The photoionization heating rate is just the photoionization rate multiplied by the energy

per ionization, eγ :

G = eγΓph = eγσphnH
∑
n

sn
4π|x− xn|2

e−τ(x,xn). (2.9)

There are several important sources of cooling for our simulation, including the re-

combination of hydrogen nuclei with electrons, free-free collisions, and line emission. When

an electron recombines with a hydrogen nucleus, it loses kinetic energy, and a photon is
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released which carries away energy from the system, cooling the gas. The cooling rate is

proportional to nH+ and ne:

Lrec ≈ ΛrecnenH+ , (2.10)

where the constant of proportionality is (Osterbrock, 1999),

Λrec ≈ (6.1× 10−10cm3s−1)kBT

(
T

K

)−0.89
. (2.11)

Another source of cooling is known as free-free emission, where free electrons get deflected

and decelerated by charged ions in the gas. In this process the electrons lose kinetic energy,

which is converted to low frequency radio photons to conserve energy, and these photons can

leave the cloud, cooling the gas. Last but not least we take into account line-emission, which

is an important source of cooling in many parts of the interstellar medium. Ion-electron

collisions excite electrons to higher fine structure levels of many-electron atoms, which will

eventually re-emit low energy photons, removing energy from the system. For our purposes

the dominant coolants are the first and second excited states of N, O, and Ne, (Krumholz

& Stone, 2007). With all of these contributions, the complete heating and cooling rates are

G = eγσphnH
∑
n

sn
4π|x− xn|2

e−τ(x,xn) + nHΓKI , (2.12)

L = ΛrecnenH+ + Λff (T )nenH+ + ΛKI(T )n2H + Λline(T )nenH+ , (2.13)

where we adopt the heating and cooling rates from Koyama & Inutsuka (2002) for neutral

gas, and from Osterbrock (1999) for partially ionized gas.
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3

Results

3.1 Symmetric Simulations

We begin our analysis by revisiting the extensively studied classic - the symmetric

HII region - where the star is situated deep within the cloud.

3.1.1 Non-MHD Run

As expected, in the absence of a magnetic field, the ionization front expands in

a spherically symmetric shell as shown in Fig. 3.1, rows 1 and 2. We can see that the

density of the shell increases over time and that virtually all the kinetic energy is contained

within the thin shell that bounds the ionization front. The shell expands slower than the

analytic approximation (Eqn. 1.3) predicts, a discrepancy that is most likely explained by

the approximations used in deriving the analytic solution. (We investigate this further in

§3.3.1).

We define the shell radius as the average radius of all cells whose density is greater
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than or equal to 1.1ρ0, where ρ0 is the initial density defined in Tab. 2.4. We plot the radius

vs. time in Fig. 3.2. This is a convenient way of defining the radius because the thin shell is

a density fluctuation resulting from the sweeping up of neutral gas by the ionization front.

For the non-MHD run this singles out the thin shell, but as we shall see in the following

section, this is not always true for the MHD run.

3.1.2 MHD-Run

In the presence of the magnetic field, the expansion of the ionization front is

strongly suppressed perpendicular to the magnetic field lines, so that over time the shape

of the symmetric-MHD HII region resembles a football, as seen in Fig. 3.1, rows 3 and 4.

The average radius is greater than in the non-MHD run as seen in Fig. 3.2, due to the fast

magnetosonic wave leading the ionization front as discussed in §1.4. From row 3 of Fig. 3.1,

it is apparent that at 0.5 Myr - corresponding to the first column of the figure - the MHD

disturbance is just beginning to take the lead in front of the ionizing shell. By 1.5 Myr this

disturbance is one of the most prominent features of the plot.

The radius of the shell is defined using the same criteria as §3.1.1, but in this

case it encompasses the material contained in between the ionization front and the fast

magnetosonic disturbance. Interestingly the resulting expansion rate, which is greater than

for the hydro run, matches the analytic approximation (Eqn. 1.3) quite well, but this is

probably just a coincidence.
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0.5 Myr 1.5 Myr 3 Myr 5 Myr

Figure 3.1: Slices in the z = 0 plane taken from the spherical-hydro and spherical-MHD

runs. The 1st, 2nd, 3rd, and 4th columns correspond to 0.5, 1.5, 3.0, and 5.0 Myr into the

simulation, respectively. The 1st and 2nd rows display the density and kinetic energy density

of the symmetric-hydro simulation, while the 3rd, 4th and 5th rows display the density,

kinetic energy density, and magnetic energy density minus initial magnetic energy density,

respectively, for the symmetric-MHD simulation. The magnetic field lines are plotted in

the 3rd row on top of the symmetric-MHD density slices.
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Figure 3.2: Radius vs. time for the symmetric-runs. The blue dashed curve represents the

analytic solution (Eqn. 1.3).

This definition explains what is seen in the symmetric-radius plot comparing the

expansion of the shell of the MHD to the non-MHD run 3.2. At t < 0.5Myr, the average

radii of the two runs are virtually indistinguishable, but around 0.5 Myr the ionizing shell

slows down enough that a fast magnetosonic wave disconnects from it and starts contributing

significantly to the average radius of the MHD-run, so that by 1.5 Myr the radius of the

MHD run is about 0.25 pc greater, and by 5 Myr it is about 2 pc greater.

Most of the kinetic energy in the MHD-run is contained in the thin shell, similar

to the non-MHD run, but there is also some kinetic energy carried by the MHD disturbance

ahead of the ionization front as seen in Fig. 3.1 row 4. This kinetic energy is greatest

during the initial stages of the wave disconnecting from the ionization front, but this energy

gets spread over an increasingly large area over time such that it is barely noticeable by
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3 Myr. Virtually all of the magnetic energy added to the cloud due to the HII region,

∆B = ((Bx)2 + (By)2 + (Bz)2)/2− ((Bx0)
2 + (By0)

2 + (Bz0)
2)/2, where Bx0, By0, Bz0 is

the initial magnetic field strength in the x, y, and z directions, respectively, is contained in

the MHD disturbance, as pictured in Fig. 3.1 row 5. This result implies that the magnetic

energy added to the cloud probably depends more strongly on the size of the region between

the ionization front and the leading magnetosonic wave than on the expansion rate of the

ionization front. Thus we expect that the magnetic energy for the blister runs presented in

§3.2 might be smaller than in the embedded run even though the ionization front expands

at a faster rate in the blister case.

3.2 Blister-Type HII Simulations

3.2.1 No Magnetic Field

First we look at the blister-type scenario where there is no magnetic field present,

in order to be able to better understand what effects the addition of a magnetic field has

on the HII region.

Density and kinetic energy slices of the computational grid are presented for 0.5,

1.5, and 5 Myr of this run in Fig. 3.3. Initially the expansion into the dense half resembles

the expansion in the symmetric case – the ionization front shell is almost identical to the

left-hemisphere of the spherical shell in the symmetric-non-mhd simulation (Fig. 3.1). Over

time, however, the deviation from symmetry becomes increasingly apparent. By 1.5 Myr

there are slivers of the dense shell that extend further in the ŷ direction – this effect is

easiest to see from the kinetic energy plot in row 2 of the same figure. This extension will

contribute significantly to the effective radius as we will show in §3.3.
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0.5 Myr 1.5 Myr 5 Myr

Figure 3.3: The blister-hydro run: the 1st row are the density slices while the 2nd row

contains the kinetic energy density. The density is plotted on a log scale so that effects in

the low-density part of the computational domain can be distinguished.

The density of the shell increases as a function of time as more neutral gas is

swept up by the shock front, while the kinetic energy density within the shell constantly

decreases due to the expansion rate becoming smaller over time. Furthermore, just as in

the symmetric case, virtually all of the kinetic energy is concentrated in the shell, with the

almost negligible exception of a spherically-symmetric jet of gas blowing out of the cloud at

high speeds. From the figure it is apparent that although this low-density material covers a

wider area than the dense shell, its average kinetic energy density is dozens of times lower

than the kinetic energy density within the shell.
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3.2.2 Magnetic Field Oriented Perpendicular to the Edge of the Cloud

This setup is the most useful for seeing the effects of adding a magnetic field; it is

easy to compare with the blister-hydro run. The first observation is that the expansion of

gas – both in the dense and low density portions of the computational domain – is limited in

the directions perpendicular to the magnetic field, as expected (Fig. 3.4). The gas gushing

out of the cloud is much more streamlined and dense.
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0.5 Myr 1.5 Myr 5 Myr

Figure 3.4: The blister-mhd run: same as Fig. 3.3 except the change in magnetic energy

density is plotted on a scale shifted to lower values than the kinetic energy density by a

factor of 10 in row 3.

A chunk of hot gas resembling a bullet bursts out of the cloud and by 1.5 Myr

has already reached the edge of the grid, implying a speed of 15-20 km/s, so a significant

amount of kinetic energy is both gained and lost over the course of the simulation. Since

we are concerned with the effects of the ionization front inside the cloud, it is important for
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our analysis not to take this fluctuation – which occurs outside of the cloud – into account

when comparing to the other runs.

The kinetic energy in the dense half is all concentrated in the shell, which is very

similar in structure to the shell in the blister-hydro case (row 2 of Fig 3.4). However, the

shell is more oblate, and in contrast to the blister-hydro shell, it actually gains kinetic energy

density over time, rather than losing it. Thus one of the most important MHD effects in

the blister-mhd case is that the magnetic field changes the nature of the expansion over

time (as we will see in §3.3), by collimating the jet of gas streaming out of the cloud (as

discussed in §1.4). Another interesting result is that within the HII region there is a net

loss of magnetic energy, as depicted by the dark tones (corresponding to a negative change

in energy) of the central region contained within the ionizing shell.

As predicted in §3.1.2, most of the added magnetic energy is contained within a

disturbence bounded by the ionization front and the fast magnetosonic wave front, and this

is confirmed by the change in magnetic energy density plots in row 3 of Fig. 3.4. The

disturbance has a behavior similar to that in the symmetric case - it is highly concentrated

at first with large values of the change in magnetic energy density, but gets diluted over

time as it covers an increasingly wide area.

3.2.3 Magnetic Field Oriented Parallel to the Edge of the Cloud

We refer to this run as the “blister-vert” run, where “vert” stands for magnetic

field lines oriented in the ŷ direction. Initially, similar to the blister-mhd case, a jet of

gas bursts out of the cloud as seen in Fig. 3.5. However the jet is not streamlined and it

is not propelled at high velocities through the low-density medium – its motion is highly
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suppressed by the magnetic field perpendicular to it – and the magnetic field gets stretched

the most out of any of the runs.

0.5 Myr 1.5 Myr 5 Myr

Figure 3.5: The blister-vert run. All the plots and colorscales are the same as in Fig. 3.4.

The kinetic energy of the cloud is concentrated in the shell just as for the other

runs but the magnetic field’s suppression of the shell’s motion in all but the vertical direction

transfers most of the kinetic energy from the spherical part of the shell to the slivers of dense

gas protruding into the low density medium by the end of the run (2nd row). The magnetic
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energy density is plotted in row 3 of Fig. 3.5. As expected, since the ionization front is slow

to expand perpendicular to the magnetic field lines, the fast-MHD disturbance disconnects

from the front earlier than in any other simulation, resulting in a very prominent density

fluctuation leading the ionization front.

3.2.4 Magnetic Field Oriented at 45◦ to the Edge of the Cloud

This simulation is a perfect blend of the properties of the blister-mhd and blister-

vert runs. As seen in Fig. 3.6, the magnetic field lines limit the expansion of the front

perpendicular to them, but do not prevent the front from travelling at a sizeable velocity

parallel to them. The result is an HII region that has rectangular structure.
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0.5 Myr 1.5 Myr 5 Myr

Figure 3.6: The blister-vert run. All panels are the same as in Fig. 3.4.

3.3 Comparison of the Symmetric and Blister Simulations

In this section we compare properties such as the radius, kinetic, magnetic, and

total energies of the various simulations.
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3.3.1 Expansion of the Ionization Fronts

As discussed in section 3.1, we define the shell radius as the average radius of all

cells whose density is greater than or equal to 1.1ρ0, where ρ0 is the initial density defined

in Tab. 2.4. This means that for MHD-enabled runs, the radius of the shell will contain the

contribution from the material in between the ionization front and the fast magnetosonic

wave front. As expected, the blister-hydro case has the fastest expanding shell, as seen in

Fig. 3.7. It is followed by the blister type runs with the 3 various magnetic field orientations

(of which the blister-mhd radius is greatest for most of the simulation, but the blister-mhd-

vert run catches up by the end), and these are followed closely by the symmetric-mhd run.

The slowest expanding front, as expected, is the symmetric-hydro run.

Figure 3.7: The mass averaged radii of all the runs. The blue-dashed curves represent the

analytic solutions.

An interesting result is the shape of the blister-hydro curve. It starts out on par
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with the analytic solution (Eqn. 1.4), takes the lead around 1 Myr, but comes back down

even lower than the analytic solution around 3.2 Myr. In reality the blister-hydro curve is

a bit misleading because it turns out that the spherical portion of the blister-hydro shell

travels significantly slower than the analytic solution predicts. This is shown in Fig. 3.8,

where we have calculated the radius of the blister-hydro shell by only considering gas along

the y = z = 0 line. The spherical part of the shell expands just a bit faster than the

symmetric shell. This implies that the slivers of the shell that extend in the ŷ direction

along the interface (as seen in Fig. 3.3) contribute significantly to the radius of the blister

hydro curve. This is most likely the reason behind the discrepancy in curvature between the

blister-hydro curve and its analytic solution; in the early-mid stages of the simulation the

slivers expand faster in the y-direction than the spherical part of the shell expands in the

radial direction, but towards the later stages the expansion of the slivers in the y-direction

slows down dramatically and the curve becomes flatter than the analytic solution.

While this may explain the shape of the curve, it does not explain why the blister-

hydro shell seems to expand at a rate comparable to the symmetric-hydro shell, rather than

faster as predicted by the analytic approximation.
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Figure 3.8: The radius for the blister-hydro run computed by only considering gas along

the y = z = 0 line. The blue-dashed curves are the same as in Fig. 3.7.

This might be partly due to the approximation that the ambient pressure is negli-

gible used in deriving the analytic approximation, as described in §1.1. This can be checked

through a simple calculation. Using the parameters in Tab. 2.4, we can calculate the ioniz-

ing luminosity of the star from the formula for the Stromgren radius (Eqn. 1.1). This turns

out to be s = 5.3 × 1047ergs/s. We want to compute the pressure of the HII region and

the ambient medium and take the ratio of the two. The pressure of the HII region is given

as PII = ρIIc
2
II , and similarly the pressure of the ambient medium is P0 = ρ0c

2
0, where ρII

and ρ0 are the densities of the HII region and ambient medium, respectively, while cII and

c0 are the sound speeds of the HII region and ambient medium , respectively. To find ρII

at a certain radius, we invoke Eqn. 1.1 again. At 1 Myr the radius of the blister-hydro

ionization shell is about 7 pc, which gives ρII = 1.46 × 10−23, and at 3 Myr, the radius
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is about 14 pc, which gives ρII = 5.2 × 10−24 (where we have used cII = 8.7 × 105 cm/s

and c0 = 5.74 × 104 cm/s from Tab. 2.4). Using these densities we find that at 1 Myr

the percentage of ambient to HII region pressure is ≈ 4.4%, and at 3 Myr it is ≈ 12.3%.

Thus although the approximation of HII region pressure dominance works quite well at

early times, by 3 Myr it is not quite as accurate, and this discrepancy can cause some of

the observed flattening of the blister-hydro curve late in the run.

Another problem with the analytic solution for the blister-case is that it assumes

that the density is the same as in the symmetric HII region. This is not quite true since

in the blister-case the gas is free to escape from the HII region out of the cloud, which is

exactly what we observe happening in Fig. 3.3. The D-type ionization front travels below

the sound speed of the HII region, so gas inside the symmetric HII region has time to spread

out and achieve a uniform density. However in the blister-case the density is lower than in

the symmetric case inside the HII region as we show in Fig. 3.9. Towards the beginning

of the run the density in the blister case is ≈ 25% smaller than in the symmetric case, a

difference which can contribute to the deviation of the blister-hydro run from the analytic

solution seen in Fig. 3.7.
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Figure 3.9: The density inside the hydro and blister-hydro HII regions plotted over time.

Another important result is how similar the expansion curves are for all the MHD

simulations (Fig. 3.7). This is due to the fact that, at late times, the radius is effectively

set by the fast magnetosonic fluctuation leading the ionization front. Thus in all the MHD

cases, the radius is determined not only by the speed of the actual ionization front, which

varies between the cases, but also by the fast magnetosonic speed, which does not. In

§3.1.2, we observed that the symmetric-MHD run had a faster expansion curve than the

symmetric-hydro run. From Fig. 3.7, we can see that the blister-type MHD runs have a

higher base expansion rate than the symmetric-case due to blister-type effects discussed in

§1.1, but the fixed value of the fast magnetosonic speed serves to ensure that the shapes of

the curves are virtually the same at late times.
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3.3.2 Kinetic Energy

We plot the total kinetic energies of the various runs in Fig. 3.10. We do not use

all the cells in the computational domain to calculate the kinetic energy, but only those

cells with a density ρ > 0.9ρ0, where ρ0 is the initial density from Tab. 2.4. We apply this

condition to ensure the low density part of the grid does not get included in the analysis

for reasons discussed in §3.2.2.

Figure 3.10: The total kinetic energy of all the runs. The kinetic energy is calculated only

considering cells whose density is greater than 90 % of the initial density. The dashed curves

represent the hydro and mhd curves divided in half.

The hydro-run has the greatest total kinetic energy, followed by the blister-hydro,

blister-mhd, blister-45, and blister-vert runs in decreasing order. As for the symmetric

MHD run, it starts off with a higher kinetic energy than all but the hydro-run, but early
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in the simulation, even before the 1 Myr mark, its kinetic energy diminishes significantly,

becoming lower than the blister-mhd run by 2 Myr, even though it is expanding into twice

as many dense cells. The dashed lines are just the hydro and MHD runs divided in half,

plotted to demonstrate that if we look at the kinetic energy in only one half of the grid, the

blister runs dominate over their symmetric counterparts. The MHD run divided in half has

as little kinetic energy as the blister-vert run.

The result that the blister-hydro kinetic energy is lower than the symmetric-hydro

kinetic energy is contrary to what we would expect to see based on the analytic solution.

From Eqn’s. 1.3 and 1.4, we see that the predicted blister radius is larger by a factor of

22/7 than the symmetric radius for any fixed time. The kinetic energy of the shell is given

by EKE = 1/2M ˙rsh
2, where M is the mass of the shell. The mass of the shell increases

as r3sh, so the mass of the blister-hydro shell should be larger by a factor of 26/7 than the

symmetric shell mass. Thus EKE should be larger by a factor of (1/2)(26/7)(22/7)2 = 23/7

for the blister-hydro run, where the 1/2 term is included to account for the fact that

the blister-hydro shell is a hemisphere rather than a sphere. In §3.3.1 we showed that

the spherical part of the blister-hydro shell actually expands significantly slower than the

analytic solution predicts (Fig. 3.8). Thus if most of the kinetic energy is concentrated in

the spherical part of the shell, the total kinetic energy for the blister-hydro run could be

lower than for the symmetric-hydro run. This is indeed the case. As seen in Fig. 3.3 row 2,

the slivers of the shell that expand in the ŷ direction have very little kinetic energy density.

Thus, even though they contribute significantly to the radius of the blister-hydro shell, the

total kinetic energy is lower in the blister-hydro case than in the symmetric-hydro case.

An important result is that the blister-mhd kinetic energy curve does not flatten as
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much as that of the spherical-mhd run. The radius plot (Fig. 3.7) seems to be at odds with

this result since all the MHD runs have very similar expansion curves. However, the radius

of the MHD curves depends more strongly on the fast magnetosonic disturbance than on the

expansion rate of the thin shell, as discussed in §3.3.1. Hence this result should not come as

a surprise and implies that the rate of expansion of the thin shell is significantly lower in the

spherical-mhd case than in the blister-mhd case. Another reason why the blister-mhd run

has more kinetic energy is because the blister shell does not get as thin due to compression

in the ŷ direction by the magnetic field lines as much as the spherical-mhd shell (Figs. 3.1

row 4 and 3.4 row 2).

Another way to compare the kinetic energy in the different runs is to examine the

energy per unit mass in the swept up region. We plot this quantity in Fig. 3.11. The

results are virtually the same as having divided the energy of the symmetric runs in half.

The blister-hydro run has ≈ 24 % more specific kinetic energy than the hydro run by 5 Myr

(compared to ≈ 14 % greater radius at the same time). The most interesting result is how

much more specific kinetic energy the blister-mhd shell contains than the blister-vert and

blister-45 runs – ≈ 2 times more by 5 Myr, and ≈ 3 times more than the MHD-run by 5

Myr.
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Figure 3.11: The specific kinetic energy of all the runs calculated only considering cells

whose density is greater than 90 % of the initial density.

3.3.3 Magnetic Energy

For the magnetic energy, we expect the results to be opposite of those for the kinetic

energy. The runs with the least kinetic energy should actually have the most magnetic

energy since energy that does not go into motion is instead stored as distortions of the

magnetic field. We present these results in Fig. 3.12. The dashed line is the MHD run

divided in half for comparison.



39

Figure 3.12: The total magnetic energy of all the runs. The magnetic energy is calculated

only considering cells whose density is greater than 1.01 times the initial density. The

dashed curve represents the mhd curve divided in half.

We only calculate the change in magnetic energy for cells with a density greater

than 1.01ρ in order to limit ourselves to the shell and the fast-MHD disturbance, and to

exclude the low density medium outside the cloud. The total change in magnetic energy

∆EB is very similar for all the blister runs. For the MHD run divided in half, ∆EB is

about on par with ∆EB for the blister-vert run, although its curve is significantly flatter

and takes the lead after 3 Myr. Fig. 3.13 shows the specific change in magnetic energy

∆EB/M , where the sums include all cells with ρ > 1.01ρ0. The curves all decline with

time, which implies that the rate at which the magnetic energy changes is slower than the

rate at which mass is swept up by the ionization front for all the runs.
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Figure 3.13: The change in specific magnetic energy.

3.3.4 Total Energy

In Fig. 3.14, we plot the total energy, that is, kinetic plus magnetic energy, for

all the runs. For the hydro and blister-hydro runs, there is no magnetic energy of course,

so this just consists entirely of the kinetic energy. Considering the dashed MHD and hydro

curves, at 5 Myr the total energy imparted to the left half of the cloud is highest in the

blister-mhd run, followed by the symmetric MHD run, then the blister-vert and blister-45

runs, then the blister-hydro, and finally the hydro run. The blister-mhd run has about the

same total-energy as the other blister runs until about 1.5 Myr, at which point it splits

from the other blister runs and by 5 Myr has ≈ 30 % more total energy. Comparing to

the blister-hydro run, it is clear that magnetic effects are of great importance with respect

to the total energy of the cloud. By 5 Myr, the blister-mhd run has about twice as much
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energy as the blister-hydro run, and the blister-vert and blister-45 runs have about ≈ 30 %

more energy.

Figure 3.14: The total energy of all the runs. The dashed curves represent the hydro and

MHD runs divided by a factor of two.

In terms of the total energy injected into the whole cloud, the winner is the sym-

metric MHD run by a large margin. However if only half of its energy is considered, the

blister-mhd run with an initial magnetic field parallel to the edge of the cloud wins out

by only a small margin. The other two blister-mhd runs have total energies very similar

to the symmetric MHD half run. The blister-mhd run has significantly more total energy

than either of the hydro runs. The reason for this is that all the lost kinetic energy for the

MHD run has to go somewhere, and it gets stored in the magnetic field, with all the gained

magnetic energy contained in the fast magnetosonic disturbance. It turns out that the sym-

metric MHD run is a bit more efficient at storing magnetic energy than the blister-MHD
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runs towards the late stages of the simulation (the symmetric MHD half plot has ≈ 30%

more magnetic energy by 5 Myr than the blister-mhd run, Fig. 3.12).

To emphasize just how important MHD effects are to the energetics of the cloud,

and hence explain why the MHD runs are so dominant over the hydro runs in terms of total

energy, we look at the ratio of kinetic energy lost to magnetic energy gained in going from

MHD to hydro for the blister-mhd run. It has only≈ 20% less kinetic energy (≈ 6×1046ergs)

than the blister-hydro run, so that the magnetic field lines do not limit the expansion of

the blister-mhd HII region very efficiently (§1.4). Of course the blister-mhd run also has

magnetic energy as opposed to the blister-hydro run, and the amount of added magnetic

energy it has by 5 Myr is ≈ 3 × 1047ergs, so the blister-mhd run gains 5 times as much

energy as it loses compared to the blister-hydro run.
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4

Conclusions

We have performed the first numerical study of the blister type HII region expand-

ing into a magnetized medium. Our main interest is to see how efficiently a magnetized

blister type HII region imparts energy into the cloud in comparison with a symmetric HII

region, and in comparison to non-magnetic HII regions. We draw the following conclusions:

(i) The boost to the expansion rate of the ionization front in the blister-hydro case

over the symmetric case is slightly less than the prediction of the analytic approximation

(Eqn. 1.4). However, the dense shell of swept up material is not entirely spherical (Fig. 3.3

row 1). It has a spherical part that expands much slower than the analytic blister solution

as well as thin tails oriented parallel to the edge of the cloud, which contribute to the radius

of the whole shell. Most of the kinetic energy is contained in the spherical part of the

shell, so the tails only make a small contribution to the energy budget. We find that the

increase in kinetic energy for the blister hydro case relative to the symmetric hydro case

is less than that predicted by the analytic approximation (Eqn. 1.4), suggesting that this

approximation could be improved by adjusting it to better fit our results.
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(ii) The expansion rate of all the MHD runs is very similar (Fig. 3.7). The blister

runs get a slight boost over the symmetric run, but mostly the radius is determined by

the material in the region between the fast magnetosonic and ionization fronts. But this

material does not contain much kinetic energy in comparison with the dense shell (e.g.

Fig.’s 3.1, 3.4, 3.5, 3.6), so the kinetic energy for the MHD runs is lower than for the

hydrodynamic runs.

(iii) Comparing magnetized blister and symmetric HII regions, the blister cases

have more kinetic energy but less magnetic energy, for reasons discussed in §1.4 and demon-

strated in Fig.’s 3.10 and 3.12. The total energy is greatest in the symmetric case, so HII

regions of this type make the greatest contribution to the total energy budget of a cloud,

but if the kinetic energy proves more important than the total energy for the purpose of

driving turbulence, then blister HII regions will be more effective.

(iv) One of the main results of our study is that any type of MHD HII region

has much more total energy, and hence is more likely to be efficient at driving turbulence,

than HII regions expanding into a non-magnetized medium. We find that the magnetic

energy added to the cloud by including the effects of MHD is at least as important as

the kinetic energy for any type of HII region. More importantly, we find that the kinetic

energy lost in going from MHD to hydro is many times less than the magnetic energy gained

(§3.3.4). Therefore future studies of HII regions and ionization feedback from star formation

should include MHD effects, and since turbulence in MGCs is still poorly understood, the

importance of the added magnetic energy from HII regions should be taken into account in

efforts that try to understand its origin.

(v) Since the morphology of most MGCs is such that most new born stars are
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likely to be near the edge of a cloud, the blister scenario is probably more common than

the embedded one. We have performed simulations showing that the blister scenario is in

some ways more efficient, in some ways just as efficient, and in other ways less efficient,

at affecting the dynamics and evolution of MGCs. Therefore it is important to take into

account the blister type scenario in future studies on star formation and turbulence.
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Appendix A

Derivation of the Shell Expansion

Rate

Here we will derive the analytic solution of the radius of the shell in the spherical

and blister cases. We assume ionization balance, consider the density ρII constant inside

the HII region, and use momentum conservation: dP
dt = F , where P is the momentum of

the shell and F is the force applied to it by the pressure inside the HII region. The mass

of the shell is Msh = (4, 2)πr3ρ0/3 since most of the mass inside the Stromgren Sphere is

contained in the shell to good approximation, where 4 and 2 are the coefficients for the

symmetric and blister cases, respectively. Using ionization balance and Eqn. 1.1 we can

write the density inside the HII region:

ρII =

(
3sµ2H

4πα(B)

)1/2

r−3/2, (A.1)

and hence the pressure inside the HII region:

P = (1, 2)ρIIc
2
II = (1, 2)c2II

(
3sµ2H

4πα(B)

)1/2

r−3/2, (A.2)
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where the coefficient of 2 for the blister case follows the argument presented in Krumholz &

Matzner (2009). Now we use momentum conservation to arrive at the equation of motion:

dP
dt

=
d

dt

[
(4, 2)πr3ρ0ṙ/3

]
= F = PA = 4πr2c2II

(
3sµ2H

4πα(B)

)1/2

r−3/2 = 4c2II

(
3sµ2H

4πα(B)

)1/2

r1/2.

(A.3)

=⇒ (4, 2)ρ0
3

[
r3r̈ + 3r2ṙ2

]
= 4c2II

(
3sµ2H

4πα(B)

)1/2

r1/2. (A.4)

This equation can be solved by using a power-law similarity solution.

r = r0 (t/t0)
η . (A.5)

Plugging this into Eqn. A.4, we get

(4, 2)ρ0
3

[
η(η − 1)r40

(
t

t0

)4η−2 1

t20
+ η2r40

(
t

t0

)4(η−1) 1

t20

]
= 4c2II

(
3sµ2H

4πα(B)

)1/2

r
1/2
0

(
t

t0

)η/2
.

(A.6)

We need to have the powers of t/t0 equal on both sides of the equation, so we solve 4η−2 =

η/2 for η to find that η = 4/7. Substituting this back into A.6, we arrive at

(4, 2)ρ0

(
12

49

)
1

t20
= 4c2II

(
3sµ2H

4πα(B)

)1/2

r
−7/2
0 . (A.7)

Now we use the fact that ts = rs/cII (Eqn. 1.2) to replace c2II with r2s/t
2
s, and from Eqn.

1.1 we can rewrite ρ0 as

ρ0 =

(
3sµ2H

4πα(B)

)1/2

r−3/2s . (A.8)

Rearranging everything to solve for r0, we get

r0 = rs

[
49

(12, 6)

(
t0
ts

)2
]2/7

= rs

[
7

(
√

12,
√

6)

(
t0
ts

)]4/7
. (A.9)

Finally we plug this back into Eqn. A.5 to arrive at our desired solution:

rsh = rs

(
7t√
12ts

)4/7

(spherical), (A.10)
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and

rsh = rs

(
7t√
6ts

)4/7

(blister). (A.11)
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