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Abstract

This thesis explores the numerical methods for studying nonspherical sonolumi-
nessceing bubbles. It contains derivations of the Rayleigh Plesset equation and
perturbations to the equation. It discusses the effect of the n=3 mode and how
it can cause bubble collaspe to happen more quickly.
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1 Introduction

In a dark room in 1934 two scientists, H. Frenzel and H. Schultes, tried to speed
up the development process of photographs by exposing them to ultrasound.
Instead, they discovered bright spots on the photographs, caused by the light
emission from bubbles of air in the development fluid. This phenomenon then
went on to be named sonoluminescence, or sound induced light. Since then,
experimental physicists have been investigating the properties of this mysterious
process. Theoretical physicists use sonoluminescence as a means to reach deeper
into fluid dynamics.

Sonoluminescence as mentioned before occurs when a bubble induced by
sound collapses quickly enough to give off light. The frequencies of the light
emitted have experimentally confirmed temperatures up to 5100 K . It is believed
by Chen, W. et. a.l in a paper published in 2008 Physical Review that there
could be even higher temperatures but go unobserved due to the opacity of
water at wavelengths characteristic of very high temperatures. The duration of
emitted light is only 35 to 100 picoseconds, while the final size of the bubble
is about 5 micrometers. During collapse, an unseen shock wave is produced by
the bubble walls exceeding the speed of sound in the liquid. In multi-bubble
sonoluminescence, this is and important factor, as each collapsing bubble exerts
a force on surroundinrg bubbles.

Sonoluminescence can occur in multi-bubble and single-bubble situations.
While multi-bubble sonoluminescence was documented since the early 1910’s,
single-bubble sonoluminescence was not documented in the lab in the United
States until 1990, when Gatian, then a graduate student, trapped a sonolumi-
nescing bubble in a sound wave. This discovery lead to the ability to perform
systematic experiments on a single bubble, something which was not possible
before. This also led to an explosion of papers on the subject, as theory was
able to be more readily tested by experiment and experiment paved the way for
more theory. From the time of its discovery until 1990, it is from these papers
that physicists started to try and explain the mechanism behind this process.

The theory of light emission considered in this model is that of thermal
bremsstrahlung radiation. However, this computational model makes no at-
tempt at simulating the actual emission of light. In this theory, ionized elec-
trons are slowed down by nearby protons and neutrons which, according to
classical mechanics, an accelerating particle will radiate. This radiation is the
light given off by the bubble. Thermal bremsstrahlung is the process adopted
in the hydrodynamic theory of sonoluminescence. It is this theory that simply
and accurately explains sonoluminescence.

Sonoluminescence also encompasses areas of chemistry as well as fluid dy-
namics and thermal physics, . These areas include diffuse equilibrium and chem-
ical reactions occurring in the bubble. The bubble must remain diffusely sta-
ble in order to induce sonoluminescence. As far as the chemical reactions are
concerned, it is observed experimentally that inert gases produce more intense
sonoluminescence. According to a book by Young in 2002 a particularly useful
gas for this is Xeon. It seems that when you dope gases with 1 percent Xeon,
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sonoluminescence is peaked. This fact maybe one of the reasons that air, which
is approximately 1 percent Xeon, has such high intensities of emission, as to be
seen by the naked eye.

My simulation is based on the hydrodynamic theory of sonoluminessce. Hy-
drodynamic theory states sonoluminescence is the consequence of well know
physical process. This includes colapse under the Rayleigh-Plesset equation,
shape stability, diffusive stability, chemical processes in the bubble and light
emission as thermal emission from an optically thin body. Predictions of light
intensities and time scales are in good agreement with experiment. The specifics
of the theory have been worked out by Hilgenfeldt et al. (1999b). Therefore,
as the simplest physics of all the theories is involved, I will proceed with this
theory. Ruth et al. (2002) have done previous work on a computational model,
and they suggest seven areas of future work. One of these areas is to add in
water vapor into the model, as it provides a important cooling mechanism in the
the hydrodynamic theory. Without water vapor, temperatures exceed 100,000
Kelvin.

There are some problems with the hydrodynamic theory however. The
Rayleigh-Plesset equation is only valid in the region where nothing exceeds
the speed of sound in the liquid. The walls of the bubble certainly do exceed
this speed in the final stages of the collapse. This is one of the reasons that
you see bounces after the initial collapse, whereas the Rayleigh-Plesset equation
predicts one, defining collapse. The theory also has little to say about why the
introduction of inert gasses increases the intensity.

My work sought to understand the importance of intial bubble geometry on
the concentration of energy. By modeling bubble collaspes of half of a sphere
and perturbations to a spherical geometry, I sought to determine the correct
geometry of the intial bubble for sonoluminessence. For this purpose the hy-
drodymic theory is sufficent and will be what I base my assumptions off of.

Unfortunatly I was unable to numerically integrate the model. However,
during the course of reasearch I found a paper [2] which embarked on the same
investigation as I sought to. I tried to invesitgate the n=3 mode of their model,
but I lacked the appropiate tools to do so. So instead I have recited their
dervation and the derivation of the reyliegh plesset equation in the radial frame
and volume frame. I then try to predict some effects of the n=3 mode on the
solution.

2 Theory

This section develops the mathematical basis for the model and understanding of
sonoluminessence in general.The most prominent equation involved in the study
of sonoluminescence is the Rayleigh-Plesset equation, an equation derived from
the study of bubble dynamics. Bubble dynamics is a description of cavitation
in liquids. Starting with Bernoulli’s equation and incorporating the ideal gas
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law, you get the following equation:

RR̈+
3

2
Ṙ2 =

1

ρ
(pg − P0 − P (t) − 4µ

Ṙ

R
− 2γ

R
)

where R is the radius of the bubble, is the density of the liquid, p represents the
pressure of the gas and liquid, µ is viscosity of the liquid, and γ is the surface
tension. This represents the most basic level of investigation of a bubble, and
as such is where all theories of sonoluminescence start. This formulation can
also be derived from the Naiver-Stokes equations, the fundamental equations
governing fluid dynamics.

A numerical solution of the Rayleigh-Plesset equation predicts bounces after
the bubble hits the minimum radius. These bounces are observed to be less
pronounced in actual sonoluminessence. The graph below presents a sample
solution of the radius as a function of time.

Here, I will take the oppurtunitty to derive the Reliegh-Plesset spherical for
a spherical bubble in two frames. The first is the radius frame, the most basic
of anyalisis. This will be followed by an equivalent derivation in the volume
frame, which is important for the study of non-spherical collaspes. Finally, a
presentation of the derivation of non-spherical contributions to the occillating
bubble are presented.

2.1 Radial Reyliegh-Plesset Equation

Consider an infinite volume of liquid with a perfectly spherical bubble in it. Let
R represents the radius of the bubble and r represents the distance from the
center of the bubble to some point in the liquid. If the bubble is occillating due
to a standing sound wave in the medium, then we have the following situation.

The expasion of the gas displaces a volume of liquid equal to its volume
which must be pushed out at the same velocity as the expasion of the bubble
radius because of the incompressibillty of the liquid.This is stated as follows
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Figure 1: As the bubble expands a radius dR, the liquid is pushed out a radius
dr

4

3
πR2dR =

4

3
πr2dr

which implies

R2 dR

dt
= r2

dr

dt

which is equal to

u(r, t) =
R(t)2

r(t)2
Ṙ(t)

where u(r, t) is the fluid velocity. Next, consider the energy of the system.
The work done moving from a radius R0 to a radius R must be equal to the
change in the kinetic energy. Now when the bubble changes radius, there is
work done on the bubble by the pressure that would have been at the center of
the bubble if the bubble had not been there. Since the pressure changes over a
scale much larger then the bubble radius, then this is almost equal to the liquid
pressure far from the bubble, which implies p∞ = p0 + P (t). This difference
between the work done by this pressure and the pressure at the bubble wall pL
is equal to the kinetic energy in the liquid and thus ( given by [3])

φKE =
ρ0
2

r=∞∫
r=R

4πr2u2 dr = 2πρ0R
3Ṙ2 (1)

Equation (1) is simply the integral of the velocity of the fluid thghout the
medium, a simple addition of all the kinetic energies in the fluid. The work
done on the gase is equal to this kinetic energy so
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R∫
R0

(pL − p∞)4πR2 dr = 2πρ0R
3Ṙ2

If you differentiate equation with respect to R you get

pL(t) − p∞4πR2 = 2πρ0(3R2Ṙ2 +R3 ∂

∂R
(Ṙ2))

Now,

∂

∂R
(Ṙ2) =

1

Ṙ

∂Ṙ2

∂t
= 2R̈

so equation (1) becomes

pL(t) − p∞ = ρ0(RR̈+
3Ṙ2

2
)

When the pressure pL is a static componet p0 and the pressure from a driving
force P (t) then you can substitute this in and rearrange to get

RR̈+
3R2

2
=

1

ρ0
(pL(t) − p0 − P (t))

This is the radial Rayleigh-Plesset equation. It is a prediction of the radius
as a function of time for a bubble in a sound field where the sound field is
represented by the P(t) term.

2.2 Volume Rayleigh-Plesset equation

The process for deriving the volume based equation is nearly identical to the
radial equation in that they both rely on the equating of kentic energy to work
done on the gas. Futhermore the consider the same assumptions for the pres-
sures far away from the bubble. The only real difference is the begining equation
which is the statement of how the fluid velocity relates to the given paramter,
in this case the volume. For a fluid velocity u(r, t) is related to the volume by

u(r, t) =
V̇ (t)

4πr2

where V̇ (t) is volume wall velocity. The same argument as for the radial
equation leads to the following for the kinetic energy in the liquid

φKE =
rho0

2

r=∞∫
r=R

4πr2u2 dr =
ρ0V̇ (t)

8πR
(

4π

3V
)

equating that to the work done by the pressure in the liquid reveals
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V∫
V0

(pL − p∞) dV =
ρ0V̇

2(t)

8π
(

4π

3V
)

1
3

Where the radius was converted to a volume from equation 8. Now we
differentiate with respect to V and use the fact that

∂V̇ 2

∂V
=

1

V̇

∂V̇ 2

∂t
= 2V̈

to show

1

8π
(

4π

3V
)

1
3 (2V̈ − V̇ 2

3V
) =

1

ρ0
(pg + pv − pσ − P (t))

This is the Rayleigh-Plesset equaion in the volume frame.

2.3 Non-Spherical Solution

Now we consider the non-spherical collapse of a bubble in an infinite medium
of liquid and inside a insonifying feild. This section follows [2] in its derivation.
The majority of this derivation is taken from [3]. In order to do this we must
consider a bubble surface given the equation

r = R(t)[1 + ε(t)Pn(cosθ)]

where ε is the amplitude of small oscillations of the shape mode represented
by the n-th Legendre polynomial and R(t) is the spherical pulsations. In this
way the bubble has a volume part given by R(t) and a shape part or mode given
by εPn(cosθ).

Now, assuming irrotational motion in the liquid, a velocity potentail can be
defined such that

u = Oφ

This is laplace’s equation and can be evaluated with the appropriate boundry
conditions. For this case the normal components of the liquid velocity at the
interface must be equal to the bubble-wall velocity. This then implies

φ(r, θ) = − V̇ (t)

4πr
− δ(t)(

R(t)

r
)n+1Pn(cos(θ)

with

V (t) =
4

3
πR3(1 +

3ε2

2n+ 1
).

The function δ(t) can be determined from the kinetic boundry condition, so
that
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δ(t) =
1

1 + n
(R2ε̇+ 3RṘε)

Now, this is not the most general solution, as a general solution willl include
an infinite sum of all the spherical harmonics, however this yeilds additional
correction terms of order ε2 which are associated with the influnce of the other
orders. This equation will be used to study the influences of only the n-th order
perturbation.

Now, consider the energy balance of the bubble. The energy of the liquid
must be equal to the energy of the gas which implies

∆Ekin.gas + ∆Epot.gas = ∆Ekin.liquid + ∆Wacousitc + ∆Epot.interface

The change in the kentic energy of the gas is must be very small, assuming
that the desity of the gas is much less then the liquid. So then ∆Ekin.gas = 0.
It is left to calculate the potienial energy of the bubble, which can be found by
assuming a polytropic gas and integrating the volume from the intial state to
the final state as follows:

∆Epot.gas =

V (t)∫
V (0)

pg(V ) dV =

{
pg0V (0)ln V (t)

V (0) , γ = 1
pg0V (0)
γ−1 [1 − (V (0)

V (t) )γ−1] γ > 1

where

V (0) =
4

3
πR3

0

and γ is the polytropic exponent. The pressure in the gas has a contribution
from the surface tension of the bubble and the ambient pressure at infinity so
pg0 = p∞0 + 2σ

R0
where p∞0 is the ambient pressure and σ is the surface tension

of the liquid. Thus the left hand side of the energy balance equation has been
put in terms of bubble constants and the volume.

For the left hand side we start with the kinetic energy of the liquid around
the bubble. This will be equal to

∆Ekin.liquid =
ρ

2

S(t)∫
S(0)

Φ
∂Φ

∂n
dS

where Φ is the velocity potential described in (17). The integral is evaluated
over the surface of the bubble and n is a unit normal vector to the bubble
surface. The evaluation of this integral reveals

Ekin.liquid(t) = 2πρR3Ṙ2 +
2πρ

(2n+ 1)(n+ 1)
[R5ε̇2 + 2(n+ 4)R4Ṙεε̇]
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Next, the acoustic work is found by integrating the changing pressure at
infinity

∆Wacoustic =

V (t)∫
V (0)

p∞(t) dV = p∞(t)V (t) − p∞(0)V (0)

where the pressure at infinity takes the form

p∞(t) = p∞0 − pAsin(Ωt).

Finally, the potenial stored at the surface is equal to the integral of the
surface tension over the surface of the bubble.

∆Epot.interface =

S(t)∫
S(0)

σ dS = σ(S(t) − S(0))

The surface area of the bubble is given by

S(t) = 4πR2[1 +
(n2 + n+ 2)ε2

2(2n+ 1)
]

The assumption of a slightly viscous fluid then contributes energy loss in
the form of dissipation. There is also a vorticity at the boundry of the bub-
ble, however this equation does not consider that in order to simplify analysis.
Dissipation is therefore

D =
µ

2

∫
S

∂(u · u)

∂n
dS

evaluation reveals

D = 8πµRṘ2 +
4πµ(n+ 2)

n+ 1
R3ε̇2 +

8πµ(3n2 + 10n+ 4)

(n+ 1)(2n+ 1)
R2Ṙεε̇

which is correct to order ε2. This is not the only form of dissipation for a
gas bubble, but in this model other forms are not considered.

The Lagrangian for the shape-volume bubble is formed from the usuall L =
T −U where T = Ekin.liquid and U = Wacoustic−Epot.gas+Epot.interface. Then
the Euler-Lagrange equations, where the dissiapation function is included gives

d

dt

∂L

∂Ṙ
− ∂L

∂R
= −∂D

∂Ṙ

d

dt

∂L

∂ε̇
− ∂L

∂ε
= −∂D

∂ε̇

Taking the derivatives yeilds the following set of equations.
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RR̈(1 +N1ε
2) +

3

2
Ṙ2(1 +N1ε

2) = [
pf (V ) − p∞(t)

ρ
](1 +N2ε

2) − 2σ

ρR
(1 +N3ε

2)

− 4µ

ρ

Ṙ

R
(1 +N4ε

2) −N5
µ

ρ
εε̇−N6R

2ε̇2 − 2N1RṘεε̇−N7R
2εε̈

where

N1 =
n+ 10

(2n+ 1)(n+ 1)
, N2 =

3

2n+ 1
, N3 =

n2 + n+ 2

2(2n+ 1)
, N4 =

3(5n+ 2)

2(2n+ 1)(n+ 1)
,

N5 =
2(3n2 + 10n+ 4)

(2n+ 1)(n+ 1)
, N6 =

2n+ 3

(2n+ 1)(n+ 1)
, N7 =

n+ 4

(2n+ 1)(n+ 1)

and the equation

ε̈+A(t)ε̇+B(t)ε = 0

where

A(t) = 5
Ṙ

R
+ 2(2n+ 1)(n+ 2)

µ

ρR2

and

B(t) = 3
Ṙ2

R2
+ (2 − n)

R̈

R
+ (n+ 1)(n− 1)(n+ 2)

σ

ρR3
+ 6n(n+ 2)

µ

ρ

Ṙ

R3
.

We can observe that the first equation is the Rayleigh-Plesset equation with
correction terms of order ε2. The second equation is referred to the shape mode
equation that is found in several peices of the literature. These two equations are
called the shape volume model and are a set of fully coupled ordinary differential
equations.

3 Numerical Work

The singularities in the Rayliegh plesset equation make it hard to numerically
solve. For most computer programs, the step size becomes too small as the inte-
grartion approaches the minium radius. In fact the singularity makes it so that
no manipulaation of the units will allow the complete equation to be integrated
using Mathematica, the program I tried to use. I can however integrate around
the singularity and see what the general shape looks like. The following two
graph are the numerical integration to the right and to the left of the 5.9, the
approxamite point of the first singularity.

Now In the region around the sinluarity we can assume two things. First,
the bubble radius is the minumum bubble radius possidble physically. For this
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Figure 2: The graphs to the left and right of the first singularity. These are
solutions of water and air with a driving amplitude of .15 atm and intial bubble
radius of 65 µm. The second graph then inputs the approxamite conditions
around t=7 which were R = 20, Ṙ = 2, ε = −9, ε̇ = 2.

point there have been several measruments of the minumu bubble radius of air
in water and that value can be used to approximate a solution. Secondly, the
value of ε and its first derivative must approach zero as welll, as the bubble can
not flucuate smaller then the minimum radius due to other mechanical reasons.
So, takeing the time t=6 to be the moment of minumum bubble radius, we can
expand both R and ε in a taylor expansion to order 2 and then differentiate
to find values of the first and second derivitives of the radius. Now, the first
derivative of R must be zero at the bubble minimum radius, Rm, because it is
the point at which the radius reverses direction. Plugging a zero for the first
derivative into the shape equation and that ε is zero gives that ε̈ is zero and the
modified Rayliegh Plesset equation becomes

RmR̈m = [
pg(Vm) − p∞(t)

ρ
] − 2σ

ρRm

where the subscript m denotes a value at the minimum bubble radius. Plug-
ging in the numbers with Rm = 2 you get R̈m = 8.47438 ∗ 1010 which is to be
expected as the bubble radius should be expanding quickly at this point. This
is an approximate value of the acceleration of the bubble wall at the moment of
the the bubble mimimum radius.

This aprroximate solution shows several things. First, the singularty is re-
peating, as expected with the Rayleigh Plesset equation. Second, the n=3 am-
plitude is mostly negative and tends to contract the bubble. From this we can
conclude that the n=3 solution tends to cause a faster collaspe in non spherical
bubbles.

By eliminating all terms of order ε2 the equations become decoupled, with
only the shape equation influencing the Rayliegh-Plesset equation. This equa-
tion is easier to integrate, however you still run into the problem of the singu-
larity.

From [2] it is shown the that the instabillity of the the n=2 mode increases
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over several ocillations. The same would most likely happend with the n=3
part.

Analysis of sonoluminessce is very complex and the differential equations
invovled are not easy to numerically evalute. The effects of small non-spherical
purturbations to the energy concentration could not be determined however a
relation between the shape and volume of the bubble was constructed. For
futher investigation a better udnerstanding of numerical methods and a better
way to implement them is required on the researchers part.

4 Conclusions

The work presented in this paper is a summary of past work and an attempt
to implement some orginal anylsis. The numerical anyalsis is unfortunatly very
approximate and can only be used for the most general of conclusions. With
better numerical methods it might be possible to increase the understanding
of each mode, and therefore the understanding of non-spherical effects on the
collaspe in general.
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