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Abstract

Effects of Cluster Dynamics on the Birth Environment of the Solar System

by

Donald A Dukes

We preformed scattering simulations with the Solar System and other stars to simulate the effects

a close encounter would have on the Solar System formation while it is still forming within its birth

cluster. Our data from the simulations shows that, contrary to prior work, the cluster dynamics

within the birth cluster has little effect on the evolution of the Solar System, and that cluster

dynamics should not be used in determining the membership size of our birth cluster. Lifting this

constraint on the upper bound of the birth cluster membership size then elevates tension between

meteoritic evidence and perviously proposed upper bound of the birth cluster membership size. Also,

we showed that the Kupier Belt object Sedna and the drastic drop in object density of the Kuiper

belt cannot be explained by a close encounter within the birth cluster except in extreme conditions.
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1 Introduction

It is very likely that our Sun wasn’t born in an isolated event, but as part of a star

cluster. The birth cluster environment is a self-gravitating system of gas and dust that collapses at

a multitude of points to create its membership of stars. This process is inefficient, converting only

10% to 30% of the mass to stars while leaving 70% to 90% as gas (Lada and Lada, 2003). As long

as the gas remains, the stars are gravitationally bound and orbit chaotically throughout the cluster.

This motion continues until the winds and ionizing radiation of the newborn stars blow away the

remaining gas. At that point the cluster is no longer self-gravitating, it disperses and the stars are

free to move about the galaxy (Adams, 2010; Chandar et al., 2010; Lada and Lada, 2003).

The chaotic motion of stars within the Sun’s birth cluster led the Sun to have to close

encounters with other stars, which in turn affected the future shape of the Solar System. By

examining the state of our Solar System as it exists today, we can put constraints on the birth

cluster’s properties. This in turn allows us to identify theoretical constraints on what might still be

lurking undetected in the far outer Solar System.

Meteorites provide one line of evidence we can use to constrain the birth cluster’s properties.

The examination of meteorite samples shows daughter products of multiple radioactive isotopes

(isotopes, daughter products and half-lives are shown in Table 1.1). These radioactive isotopes most

likely originated from stellar nucleosynthesis and their presence suggests that there was a nearby

supernova that enriched the Solar Nebula with these isotopes. The evidence of these isotopes comes

from meteorites that formed very early in the Solar System’s development, indicating that it was
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exposed during the period of planet formation. To have such exposure so early would suggest that

the birth cluster would have to be able to produce a star of around 25 solar masses or more. In

addition to that, the supernova would have to be close enough to deposit the isotopes (< 0.3 pc),

yet not so close as to have stripped off the Solar Nebula’s mass with the supernova blast (> 0.1 pc).

Both of these considerations suggest a large birth cluster. Adams (2010) estimates that it had to

have at least 1000 members.

Table 1.1: Radio Isotopes. Taken from Adams (2010)

Nuclear Species Daughter Half-life (Myr)
7Be 7Li 53 days
10Be 10B 1.5
26Al 26Mg 0.72
36Cl 36Ar 0.30
41Ca 41K 0.10
53Mn 53Cr 3.7
60Fe 60Ni 1.5

107Pd 107Ag 6.5
182Hf 182W 8.9

An upper bound on the birth cluster size comes from cluster dynamics. Given the chaotic

environment of the birth cluster and the lower limit on its membership, close encounters between

star systems are to be expected. These close encounters would perturb the Solar Nebula during its

formation. Any such perturbation must still permit the formation of a Solar System like the one we

see today.

Our Solar System currently has eight well ordered planets. Their orbits all lie close to the

same plane (inclination angles ≤ 3.5◦), and they have small eccentricities (less than 0.2, or less than

0.09 is we exclude Mercury, whose eccentricity is pumped by perturbations from other planets).

This suggests that no star passed closer than 225 AU from the Sun in the epoch after formation of

the gas giants (Adams, 2010). By coupling this limit on the closest approach with the observation

that clusters take ∼ 1-4 crossing times to form (Adams, 2010; Lada and Lada, 2003; Tan and et al.,

2006), Adams estimates an upper limit of ∼104 stars on the size of the birth cluster.
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This upper limit of membership size is in tension with the proposal of a nearby supernova

to explain the meteoritic evidence. The lifetime of a 25 M� star before it goes supernova is ∼ 7.54

Myr. Lada and Lada (2003) estimates one crossing time to be ∼1 Myr, and given that the Solar

System should reside within the birth cluster for ∼ 1 − 4 crossing times, a 25 M� would take too

long to evolve to be the cause of the radioactive isotopes. A 75 M� star, however, has a lifetime of

∼ 3.64 Myr. According to Adams (2010), to have a reasonable probability of producing such a star,

a birth cluster of membership size of > 104 will be needed.

We can now turn to the main goal of this work: studying the implications of cluster size and

cluster dynamics on the Solar System, and the effects of encounters for other birth cluster members

on the formation of our outer Solar System and the objects that are likely to be lurking out in the

dark. Three areas of particular interest are the abrupt density decline in the Kuiper Belt at 45 AU,

the unusal Kuiper Belt Object Sedna, and the hypothesized Nemesis star.

Current understanding of the formation of the Solar System suggests a large population of

small bodies left over from the formation epoch should exist outside of Neptune’s orbit. This area

is known as the Kuiper Belt. The existence of Neptune, with its size and orbit, suggests that the

surface density of the Solar Nebula would have been high enough to produce KBOs out to distances

much greater than 50 AU, with a gradually declining object density proportional to 1
r . Neptune’s

gravitational influence become insignificant beyond 50 AU, which implies that it could not perturb

objects outside of this range. Nonetheless, current observations show that there is a abrupt object

density decline of the Kuiper Belt at about 45 AU. Three hypotheses have been proposed to explain

this: that a close encounter with an impact parameter of less than 90 AU truncated the disk, that

objects are there but are dynamically cold, and that Neptune and Uranus formed closer in and

migrated out after formation (Allen et al., 2001). However, there has been only limited studies of

the first of these possibilities and Adams (2010) estimates from these limited studies that the rate

of such close encounters is only ∼ 10−3 Myr−1.

Close encounters in the Sun’s birth cluster could also help explain the Kuiper Belt Object
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Sedna. This object has an unusual orbit quite different from that of other Kuiper Belt Objects

(KBOs). Its eccentricity is 0.84, and its perihelion is 76 AU (Adams, 2010; Schwamb and et al.,

2010). In contrast, other KBOs tend not to have perihelia above 45 AU, and have an average

eccentricity of 0.3 (Schwamb and et al., 2010). If the Solar Nebula were left to itself, we would

expect it to create well ordered objects orbiting the Sun. This is because collisions between particles

within the nebula transfers energy between particles, which tends to average out the velocities of

forming objects and produce low eccentricities. For an object like Sedna to have a high eccentricity,

more energy would have to have been transferred to it than to other objects nearby. One possible

explanation for the existence of Sedna is that there was a close encounter between the Sun and

another star that perturbed a KBO’s orbit (Adams, 2010). Previous simulations have studied how

encounters might affect the gas giants, but very few simulations have been done to study how

encounters might affect the Kuiper Belt.

There has also never been a study of the implications of close encounters for the Nemesis

Hypothesis. Nemesis was first proposed in 1984 to explain a puzzling 26 million year periodicity

in mass extinction in the fossil records on Earth (Raup and Sepkoski Jr., 1984) (See Fig. 1.1).

Periodic mass extinctions with such regularity on our planet would seem to suggest an astronomical

explanation. Two independent groups of astronomers, Davis et al. (1984) and Whitmire and Jackson

IV (1984), put forth as a possible explanation that our Sun has a companion star, which they called

Nemesis. They hypothesized that such a star would perturb objects in the Oort Cloud, sending

them into the inner Solar System, which would result in a periodic increase in the rate of impact of

extraterrestrial objects into the Earth. This would cause mass extinctions.

Both groups have identified limits as to where Nemesis could exist: its semi-major axis

would have to be from 33,000 AU to 88,000 AU, and its eccentricity would have to be greater than

0.7. Given the mean semi-major axis of the Oort Cloud objects, ∼30,000 AU (Davis et al., 1984),

a companion to the Sun with these orbital parameters could orbit just outside the Oort Cloud,

periodically dipping into it. This, in turn, would cause perturbations that would shower the Solar
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Figure 1.1: Extinction record for the past 250 ma. Letter codes (bottom) identify stratigraphic

stages. The best-fit 26-Myr cycle is shown along the top as vertical lines. The relative heights

of extinction peaks should not be taken as literal expressions of extinction intensity because the

absence of extant taxa exaggerates the heights of younger peaks (Raup and Sepkoski Jr., 1984).

System with Oort Cloud debris. Given the number density of the Oort Cloud and the range of

possible Nemesis properties, an estimated 25 to 50 objects would strike the earth every 26 million

years under this scenario.

Given that Nemesis has not been observed, Whitemire & Jackson estimate that such an

object would have to have a mass below 8× 10−2 M�. Below this mass, an object would not have

enough gravitational energy to ignite fission within its core. This would allow Nemesis to remain

undetectable in the visible and extremely dim in infrared bands. It would also have a negligible

gravitational impact on the the orbits of planets and KBOs. These factors would allow Nemesis to

elude detection.

But how would such an object get there? There are two possibilities: either Nemesis was

captured after the Solar System was formed, or it formed with Sun. The statical likelihood of the

former is extremely low. A formation of a binary system from two unbound stars would require
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a three body encounter, so as to shed kinetic energy to the third star. Simulations show that in

large clusters (such as our birth cluster) three body encounters that produce binaries are extremely

rare and the binaries that are produced tend to consist of the most massive stellar components of a

cluster (Tohline, 2002). Therefore, if Nemesis exists, it must have formed with the Sun within the

Solar Birth Cluster. Since brown dwarfs make of 20-25% of the population of newborn stars (Lada

and Lada, 2003), this is not a priori implausible.

However, the work of Davis et al. and Whitmire & Jackson preceded the realization that

most stars, including our Sun, were born in clusters. To date, there has been no study examining

whether a binary consisting of the Sun and a distant brown dwarf companion would be likely to

survive the effects of encounters in the birth cluster. If Nemesis formed with the Sun, then it would

also be affected by the close encounters that perturbed our Solar System. But what are the effects

of these close encounters on such a star? Given the distance from the our Sun and its low mass,

Nemesis would seem to be a easy target, particularly if we hypothesize that there were encounters

close enough to sculpt the outer Kuiper Belt and produce Sedna.

Currently, there is no research or data on the effects that a close encounter with other

stars in the birth cluster would have on such an object. Likewise, there is no research or data on

the effects of a close encounter and its relation to an abrupt Kuiper Belt edge. In this work, we

conduct a series of simulations to address all of these problems. We start with the assumption that

Nemesis has formed with the Sun and run a scattering simulation. In chapter 2, we will look at the

scattering simulation which determines the probability of an event happening (for example Nemesis

becoming unbound or KBOs being scattered into Sedna-like orbits). In chapter 3 we will look at the

end results from the simulations and discuss what information we can extract from the data, while

in Chapter 4 we make our conclusions.
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2 Methods

To determine the effects that a close encounter would have on the Solar System, I have

created an N-body computer simulation. This simulation begins with a model of the Solar System

and then simulates the gravitational effects of a star on the Solar System as it approaches from a

large distance, passes, and recedes. This simulation is run multiple times under different conditions,

and the combined outcomes of these runs are then used to determine the probability that an event

will occur. Possible events include Nemesis becoming unbound from the Sun/Nemesis system, a

KBO coming unbound, a KBO being excited to an eccentricity > 0.9, and a Jovian planet being

excited to an eccentricity > 0.1. In Section 2.1 I give an overview of my simulation and what we

seek to accomplish using it. In Section 2.2, I describe the simulation setup. In Section 2.3 I present

the simulation engine and finally in Section 2.4 I talk about how the simulations handles each run

and stores the raw data.

2.1 Overview

We start with the idea of the probability of an event occurring (pm,v,b,θ,φ) at a given

value of these variables: mass of incoming star (m), the velocity of the incoming star (v), the impact

parameter of the incoming star (b, distance of closest approach in absence of gravity), the inclination

angle (θ, measured between line of closest approach and line perpendicular to the ecliptic), and the

azimuth angle (φ, measured between the projection of the incoming star onto the ecliptic and the

initial line between the Sun and Nemesis). From pm,v,b,θ,φ we can determine the average cross section
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times velocity of an event (〈σv〉event) by integrating pm,v,b,θ,φ over all possible values:

〈σv〉event =

∫ ∞
−∞

dv
1

σ3
v

√
2

π
v3e

−v2

2σ2v

∫ mmax

0

dm
dN

dm

∫ bmax

0

db 2πb

∫ π

0

dθ sin θ

∫ 2π

0

dφ pm,v,b,θ,φ. (2.1)

Here dN
dm is the probability that a random star will have mass between m and m + dm (the IMF),

σv is the standard deviation of the velocity distribution, mmax is determined by the IMF and bmax

will be discussed in Section 2.2. This expression assumes that the stellar velocity distribution is

Maxwellian.

To evaluate 〈σv〉event, we will utilize the computer simulation to do the integration of four

variables, leaving us with just one variable, velocity, for which we can safely account by assuming

the distribution of encounter velocities is Maxwellian. The simulation will begin with a model of the

Solar System with the Sun, Nemesis, the four Jovian planets and a number of KBOs (see Section

2.2). It will then simulate a close encounter by starting with one or two incoming stars far away with

a randomly chosen m, b, θ and φ, with each variable weighted differently (see Section 2.2). Once the

simulation begins, we compute the paths of all bodies using a Bulirsch-Stoer method (see Section

2.3). When the incoming star has passed the Sun and is very far away, the simulation is stopped

and final orbits are calculated for all objects in the Solar System. Then each event in question is

analyzed, and we calculate pm,v,b,θ,φ. With pm,v,b,θ,φ know for each event, we can then determine

that average cross section of a event happening at a given velocity (〈σ〉) by integrating over m, b, φ

and ψ

〈σ〉 =

∫ mmax

0

dm
dN

dm

∫ bmax

0

db2πb

∫ π

0

dθ sin θ

∫ 2π

0

dφ pm,v,b,θ,φ. (2.2)

As the number of runs becomes to large, the four randomly chosen variables cover the full range

of values of each variable (See section 2.4). We then assume that the stellar velocity distribution

within the birth cluster follows a Maxwell-Boltzmann distribution. We can therefore integrate 〈σ〉

over all velocities to obtain average cross section time velocity,

〈σv〉event =
1

σ3
v

√
2

π

∫ ∞
−∞
〈σ〉v3e

−v2

2σ2v dv. (2.3)

Once 〈σv〉 is determined, we can obtain the rate at which an event is encountered by multiplying
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〈σv〉 by the number density in the birth cluster (nc)

Γevent = nc〈σv〉event. (2.4)

Given Γevent, we can determine the expected number of occurrences of the event, Λevent,

by multiplying Γevent by the total time the Sun is exposed within the cluster. This time will be

roughly the time for which the cluster survives before mass evaporation leads it to disperse, tlife.

Since tlife is estimated to be between one and four crossing times (see Section 1), we will take tlife

∼ tcross. If the true lifetime is longer then an event’s probability will be increased proportionately.

Thus, we have

Λevent = Γeventtcross. (2.5)

To compute the overall probability that an event will happen (Pevent), we assume the events

follow a Poisson distribution. For a Poisson process with expectation value Λ, the probability of k

occurrences is

P (k) =
Λke−Λ

k!
. (2.6)

We want to compute the probability that an event will occur at least once. To calculate this, we

subtract the probability an event will not occur (k = 0) from unity

Pevent = 1− P (0). (2.7)

This then leads us to

Pevent = 1− e−Λ. (2.8)

The initial conditions of the birth cluster are unknown to us, so we cannot directly compute

Γevent and tcross. However, we can estimate them in terms of the cluster surface density (Σc) and

cluster mass (Mc). Γevent depends on the number density of stars within the cluster, nc, and the

velocity dispersion, σv. The number density is implicitly given by:

Mc =
M�

5
nc

4

3
πr3
c (2.9)
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where rc is the radius of the cluster and we use M�
5 as the average mass per star (Chabrier, 2005).

The cluster surface density is given by

Σc =
Mc

πr2
c

. (2.10)

The crossing time is

tcross =
rc
σv
. (2.11)

Solving these equations, we obtain

nc =
15π

1
2 Σ

3
2
c

4M�M
1
2
c

(2.12)

tcross =
M

1
4
c

G
1
2 (πΣc)

3
4

(2.13)

σv = G
1
2 (πσMc)

1
4 . (2.14)

Given these relations, we can estimate Λevent and Pevent in terms of Mc and Σc.

2.2 Setup

In each simulation we put the Sun, a particle of mass M�, at the origin. Nemesis’s mass

(MN ) was set to one of three values: 0, 0.02M� or 0.08M�. We did this because Nemesis’ mass is

unknown and could in theory be any size below 0.08M�, the hydrogen burning limit (see Section

1). Including different possible masses for Nemesis enables us to determine whether the probability

of an event occurring depends on Nemesis’s mass. This could allows us to identify possible mass

constraints on Nemesis. In our setup, Nemesis always begins at its aphelion with a semi-major axis

(aN ) of 1000 AU. Given this, its starting distance from the Sun is given by ro = aN (M�+MN )
M�

, and

we place it on the x-axis. We then randomly select an eccentricity (eN ) between 0.0 and 0.4 and

calculate Nemesis’s starting orbital velocity

vo =

√
G(M� +MN )

1− eN
aN

(2.15)

as if it were orbiting clockwise in the xy plane around the Sun (i.e. the starting velocity has only

a negative y component). Finally, the program randomly selects an angle from zero to 2π and
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then rotates Nemesis’s xy-position and xy-velocities by the selected angle to ensure that Nemesis is

randomly oriented relative to the incoming star(s).

We then place the planets in the simulation. We only include the four Jovian planets

(Jupiter, Saturn, Uranus and Neptune) not the Terrestrial planets (Mercury, Venus, Earth and

Mars) or the astroid belt. We excluded these objects because the perturbation from either the

incoming star(s) or Nemesis would completely disrupt the orbits of the Jovian planets well before

disturbing the orbits of the other objects, and thus including them would consume CPU time while

providing little insight. The masses of the four Jovian planets (as well all KBO objects) were set to

zero. This is done because we are looking to determine the effects of the perturbations of Nemesis

and the incoming star(s) and not the perturbations from interaction between objects within the solar

system. Also, given that these objects have such a small mass relative to the Sun and the incoming

star(s), their gravitational effects will be negligible. We determine the orbits of each Jovian in the

same way that Nemesis’s orbit, with the semi-major axis and eccentricity taken from Carroll and

Ostlie (2007). These values can be found in Table 2.1. We also rotate each Jovian’s orbit by a

random angle from zero to 2π to randomize the phase.

Table 2.1: Jovian Orbit Properties. Data obtained from Carroll and Ostlie (2007)

Planet Semi-Major Axis (AU) Eccentricity

Jupiter 5.2044 0.0489
Saturn 9.5826 0.0565
Uranus 19.2012 0.0457

Neptune 30.0476 0.0113

In order to recreate the initial conditions of the Solar System, we set up the Kuiper Belt

to correspond to the theorized initial surface density and gradual decline. We place a total of 320

KBOs in the simulation arranged in 32 concentric circles with ten KBOs per ring. Within each

ring, all ten KBOs are evenly spaced, creating an angle of π
5 between each KBO. The first ring has

a radius of 35 AU, and each successive ring’s radius is 15 AU larger, leaving the last ring at 500

AU. Thus, the KBOs are arranged like a wheel with ten spokes radiating outward, with the Sun at
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the center in the xy-plane. We make the KBOs massless (as mentioned above) and give them zero

eccentricity. This setup is intended to allow easy examination of perturbation effects from both the

incoming star(s) and Nemesis after the simulation was finished running. We determine the starting

velocities for the KBOs using the same equation (equation 2.15) used for Nemesis and the Jovians.

Next we set up the incoming star(s). The first step is to determine the mass of one incoming

star by randomly choosing from the initial mass function (IMF). The probability that the incoming

star has a mass from m to m+ dm is giving by p(m) = Kξ(m) where K is a normalization factor

and

ξ(m) =


( mm1

)−α0 : ml < m ≤ m1

( mm1
)−α1 : m1 ≤ m ≤ m2

( mm1
)−α1( mm2

)−α2 : m2 < m ≤ mu

(2.16)

with the following values determined through observational means reported by Kroupa (2002)

α0 = +0.3 : 0.01 < m
M�

≤ 0.08

α1 = +1.3 : 0.08 < m
M�

≤ 0.50

α2 = +2.3 : 0.50 < m
M�

≤ 120

(2.17)

We then determine whether the incoming star is alone or part of a binary system. We set

the probability that the incoming star is in a binary based on a rough fit to the binary mass function

versus primary mass reported by Lada (2006) and Kouwenhoven et al. (2007) for low and high mass

stars, respectively. The binary fraction we adopt is

fbinary =


0.2 : m < 0.5 M�

0.2 + 0.8
(
m−0.5

1.5

)
: 0.5 M� ≤ m ≤ 2.0 M�

1.0 : m > 2.0 M�

(2.18)

We randomly determine whether the primary is a binary, and, if so we select a secondary from the

IMF. We took the first star to be the primary star, so if the mass selected for the second star is

greater than the first, that mass is rejected and another is selected.

Next we choose the impact parameter b, the closest approach the incoming star would

have with the Sun in the absence of gravity. The cross-sectional area available at impact parameter
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b, and thus the probability that an incoming star has an impact parameter between b and db, is

proportional to b. We therefore select a value from 0 to bmax, with the probability proportional to

b. We take bmax to be 2000 AU because we found that encouters with larger b essentially never

perturbed any part of the solar system significantly.

We then placed the incoming star(s) onto our coordinate system. In the case of just one

incoming star, we placed the star with x-coordinate 10,000 AU, y-coordinate of zero and z-coordinate

of b. The star was given its initial velocity as described in Section 2.4 just in the negative x direction,

with a velocity of zero in both the y and z directions. When a binary system was identified for the

close encounter, the center of mass of the binary system was placed in the same coordinates as for

a single star. We then selected the orbital properties of the binary system. Based on observations,

we adopt a period (τ) distubution

p(log τ) =
1√

2πσ2
log τ

e

−(log τ−log τ)2

2σ2
log τ (2.19)

where logτ = 4.8, σlogτ = 2.3 and τ is in days (Duquennoy and Mayor, 1991). Given τ , the

semi-major axis is then

a =
3

√
Gτ2(m1 +m2)

4π2
. (2.20)

Next we randomly select an eccentricity from a uniform distribution going from 0.2 to

0.8 (Duquennoy and Mayor, 1991). With the eccentricity and semi-major axis we then determined

orbital dynamics of the binary system using same equations used with Nemesis and the Jovians. We

place both stars along the line y=0, z=b. The displacement of the two stars from the center of mass

is

r1 =
a(m1 +m2)

m1
(2.21)

r2 =
a(m1 +m2)

m2
. (2.22)

Thus the x-component of the primary star was 10,000AU - r1 and the secondary star was 10,000AU

+ r2. The velocities were obtained using the same formula as Nemesis. We then added the velocity
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of the center of mass to create an orbiting binary system with its center of mass moving towards

the Sun at the initial velocity.

The set up as described placed both the Solar ecliptic and the plane of orbit for the binary

stars parallel to one another. However, these two planes should completely randomly oriented

relative to each other. To do this, we select three random angles (θ, φ and ψ) between zero and 2π.

θ is used to transform their positions and velocities of both stars about the center of mass clockwise

in the xy-plane. φ then transforms the two stars by rotating then about the line that was parallel

with the the x-axis and passes through their center of mass. Finally, ψ transforms them about the

line parallel with the y-axis and through their center of mass.

The final step before starting the run is to orient the Solar ecliptic. The set up at this

point places the incoming system edge-on relative to the ecliptic, but we would expect the incoming

system to be at any angle relative to the ecliptic with equal probability. Since we already rotated

the each of the Jovians and Nemesis in the xy-plane, we only have to consider rotating the Solar

System about the x-axis and the y-axis. We randomly select two more angles (α and β) between

zero and 2π. Using α as the angle the ecliptic was rotated about the x-axis and β the angle the

ecliptic was rotated about the y-axis, we transform the positions and velocities of of each planet,

KBO and Nemesis by

Xnew = Xold cosβ + Yold sinβ sinα

Ynew = Xold cosα+ Yold sinα

Znew = Xold sinβ + Yold cosβ sinα

Vx−new = Vx−old cosβ + Vy−old sinβ sinα

Vy−new = Vx−old cosα+ Vy−old sinα

Vz−new = Vx−old cosβ + Vy−old cosβ sinα

(2.23)
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2.3 Engine

The equations of gravity which the engine solves are given by

ẍi =

N∑
j=1,j 6=i

GMj

r2
ij

xj − xi
| ~rij |

(2.24)

ÿi =

N∑
j=1,j 6=i

GMj

r2
ij

yj − yi
| ~rij |

(2.25)

z̈i =

N∑
j=1,j 6=i

GMj

r2
ij

zj − zi
| ~rij |

(2.26)

where ~rij is the vector going from object i to object j and N is the total number of objects within the

simulation. We solve these equations using an engine that is based on the Bulirsch-Stoer method

(Press et al., 1988). The Bulirsch-Stoer Method is a very effective numerical method for solving

smooth ODEs. The Bulirsch-Stoer method relies of these techniques: Richardson extrapolation,

the use of rational functions as fitting functions for the Richardson extrapolation and the modified

midpoint method.

Richardson extrapolation considers the final result of a numerical calculation as itself being

an analytic function of an adjustable parameter of the step size h. By varying the value of h, the

Richardson extrapolation method can construct an approzimate analytic function for the result of

the calculation as a function of h, and evaluate in the limit h → 0. The next concept is to have

the Richardson extrapolation construct the analytic function approximation as a rational function.

Rational functions have the advantage over polynomial functions that they lack singular points in

the complex plane. If a polynomial function is used in Richardson extrapolation, the size of h is

limited by the radius of convergence dictated by the singular point. Rational functions do not have

this limitation and thus can use very large h with minimal error. Lastly, the Bulirsch-Stoer Method

uses the modified midpoint method to advance the rational function obtained by the Richardson

extrapolation by a step size of H by breaking it down into n smaller step sizes of h where h = H
n .

The numerical values of the smaller step sizes are then evaluated to the average of the surrounding

steps, advancing the function bit by bit until the full step size of H is completed (Press et al., 1988).
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2.4 Runs and Data

Each run begins with the incoming star(s) at a distance of 10,000AU from the Sun, and ends

when the star(s) returns to that distance. We record the initial and final positions and velocities for

all objects within the simulation, plus all randomly selected variables. From the final velocities, we

then compute the eccentricities of all objects orbiting the Sun. We consider three possible masses

for Nemesis (0.0, 0.02 and 0.08M�) and forty possible initial velocities for the incoming star(s),

ranging from 0.5km/s to 20.0km/s in 0.5km/s intervals. We preform a simulation at each of the

three possible Nemisis masses beginning with the lowest incoming star velocity, with all randomly

determined quantities (incoming star mass, impact parameter, angle, etc.) held fixed. We then

repeat this procedure, incrementing the incoming star velocity each time. This gives us 120 total

runs per file, and we complete 1644 such sets of 120 runs. We will call data from these runs alone

Type I. Also, to examine the effect of lower velocity encounters in more detail, we ran another set of

simulations in which the incoming star velocity starts at 0.1km/s and increased the velocity per run

by 0.1km/s up to 2.5 km/s. This set of simulations was only done for a Nemesis mass of 0.02M�

and therefore has only 25 runs per file, and we completed 1865 such sets of 25 runs. We will call

data from these runs alone Type II.

We use a Monte Carlo integration method to evaluate the integral in equation 2.2. As

our four random variables change with each run and the number of runs approaches large numbers,

we will have sampled each integrand at the full range of the variables and thus reconstructed the

integrals. Given this, equation 2.2 will then be reduced to

〈σ〉 = p(v)eventπb
2
max (2.27)

where p(v) is the number of events occurring at a given velocity divided by the total number of runs

at said velocity. Once 〈σ〉 has been constructed for each event in which we are interested, we can

then numerically determine 〈σv〉event in equation 2.3.
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3 Analysis

Figure 3.1: Expected number of encounters between the Sun and another star with b < 2, 000 AU

per cluster crossing time, as a function of cluster mass Mc and surface density ΣC . The number of

encounters is independent of Mc. This is because if 〈σ〉 is constant, then the integral in equation

2.3 is proportional to Mc, which leaves Λ ∝ nctcross
σ3
v

Mc ∝M0.

The simulation of our Solar System was started with 320 KBOs, four Jovian planets and

one brown dwarf star (See Section 2.2). After the simulation stopped, the eccentricities of all objects

were determined, and the effects of the close encounter could be seen. In this section we will look at
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the effects of close encounters. To set the stage, we first compute the expected number of encounters

the Sun experiences with b < 2, 000 AU per cluster crossing time. We do so by making p(v) = 1 for

all velocities in equation 2.27, and thus 〈σ〉 = πb2max where bmax = 2000 AU. We can then calculate

Λ from equations 2.3, 2.4 and 2.5. We show the results in Fig. 3.1. In this and all similar figures, we

consider clusters with mass Mc = 102−106 M�, and surface density Σc = 10−1−100.5 gcm−2. As we

can see in Fig. 3.1, the number of expected encounters ranges from ∼ 1 at low surface densities up

to ∼ 20 at the other extreme. With this background, in Section 3.1 we discuss how close encounters

affect the four Jovian planets, and whether the effects depends on Nemesis’s mass. In Section 3.2

we look at the effects on the KBOs. Lastly in Section 3.3, we will examine the effects of a close

encounter on Nemesis itself and we compute the likelihood of Nemesis becoming unbound.

3.1 Effects of Close Encounters on the Jovian Planets

Our Solar System as we see it today is well ordered (See Section 1); therefore, any proposed

birth cluster properties that would cause one of the Jovian planets to have an eccentricity greater

than 0.1 can be rejected. We construct p(v)Jovian>0.1 from equation 2.27 by dividing the number

of times a given Jovian is excited to an eccentricity above 0.1 at a given velocity by the number

of runs at said velocity. Next we multiply p(v) by πb2max to obtain 〈σ〉Jovian>0.1, or the average

cross sectional area in which a Jovian planet will be excited to an eccentricity greater than 0.1 at a

given velocity. First, we investigate our results’ dependency on Nemesis’s mass. Figure 3.3 shows

the 〈σ〉Jovian>0.1 vs. velocity from data Type I for each Jovian. In each plot, three different lines

that represent 〈σ〉Jovian>0.1 from simulations with different masses of Nemesis. Using the three data

from the three different Nemesis masses, we compute the mean value, µ(v), and the variance, s(v),

of 〈σ〉Jovian>0.1. We then compare each run of fixed Nemesis mass with µ(v) using a χ2 test. We

report the results in Table 3.1. The data shows no dependence of the results on Nemesis’s mass.

For the rest of the paper, unless explicitly stated, all calculations will use all data without regard to

Nemesis’s mass.
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Having established this result, we now compute 〈σ〉 and ΛJov>0.1 (equation 2.5), for each

Jovian. We show the results in Fig. 3.2 and 3.4. Looking at Fig. 3.4, we see that across all reasonable

values of Mc and Σc, the number of expected encounters in which any of the Jovian planets is excited

is much less than one.

We next use ΛJov>0.1 in equation 2.8 to compute the probability of a Jovian being excited

to an eccentricity greater than 0.1. Figure 3.5 shows the results. Looking at these plots, we see

that the probability of exciting a Jovian to an eccentricity greater than 0.1 is very low across all

cluster masses and surface densities. For all four Jovians, the only conditions under which the

probability goes above 1% are when the cluster is very low mass and very high density. The highest

probability we obtain in any of the figures is just above 9%, for Neptune. Close encounters have

minimal effects on the Jovian planets. Furthermore, as we increase the birth cluster’s mass at fixed

Σc the probability of exciting a Jovian decreases. This is because σv ∝ M
1
4
c (equation 2.14), so σv

rises with Mc. Looking back to Fig. 3.2, we see that 〈σ〉 is dramatically lower at velocities greater

than 3.0 km/s than at lower velocities. At higher velocities, a star has less time to interact with

our Solar System and thus its effects on the Solar System are greatly reduced. This, coupled with

an encounter rate that is independent of Mc (Fig. 3.1), leads us to the conclusion that well ordered

planets can form in birth clusters with membership size greater than 104.

To understand why our conclusion is at odds with that of Adams (2010), it is helpful to

define a velocity-dependent maximum impact parameter for a given interaction by

b(v) =

√
〈σ〉
π
. (3.1)

We show this quantity in Fig. 3.6. We see that at very low velocities (around 0.1 km/s), the impact

parameter a very large (∼ 1700 AU for Neptune and ∼ 1200 AU for Jupiter, the two extremes).

However, as we move to about 0.5 km/s, there is a drastic drop off in b(v), with Neptune falling to

∼ 700 AU and Jupiter to ∼ 300 AU. Above 3.0 km/s, b(v) is less than 150 AU for Neptune and

less than 75 AU for Jupiter, and it continues to decrease (much less drastically) as we move to the

higher velocities. This shows that even though at low velocities the impact parameter is big, at
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slightly higher velocities b(v) is significantly less than estimated impact parameter of 225 AU used

by Adams (2010) to place an upper limit on the birth cluster membership size.
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Nemesis Mass ν χ2 Q(ν2 ,
χ2

2 )

Jupiter
0 M� 16 9.296 0.86

0.02 M� 16 10.22 0.81
0.08 M� 16 10.98 0.75

Saturn
0 M� 21 16.16 0.71

0.02 M� 21 15.24 0.76
0.08 M� 21 16.00 0.72

Uranus
0 M� 25 17.88 0.81

0.02 M� 25 11.73 0.98
0.08 M� 25 18.67 0.77

Neptune
0 M� 32 20.37 0.92

0.02 M� 32 11.48 0.99
0.08 M� 32 24.15 0.80

Nemesis
0 M� 39 20.93 0.98

0.02 M� 39 21.80 0.98
0.08 M� 39 27.27 0.90

Table 3.1: Results of a χ2 comparison between 〈σ〉 for each Nemesis mass, and the mean of 〈σ〉

over all three different Nemesis mass. We report results for 〈σ〉 for five events: Jupiter achieving

ε > 0.1, Saturn achieving ε > 0.1, Uranus achieving ε > 0.1, Neptune achieving ε > 0.1 and Nemesis

itself becoming unbound. The degrees of freedom for the test, ν, is the number of velocity bins

with useable data (i.e. if the a given velocity bin is empty for all three masses, then that bin is not

counted as a degree of freedom). Q(ν2 ,
χ2

2 ) = 1 − P (ν2 ,
χ2

2 ) where P (a, x) is the incomplete gamma

function, is the chi-square probability function which ranges from 0 to 1 where 0 is low confidence

that the data were drawn from the same parent distribution and 1 is high confidence (Press et al.,

1988). Note that all Q(ν2 ,
χ2

2 ) values are close to unity, indicating good agreement between the data

sets.
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(a) Jupiter (b) Saturn

(c) Uranus (d) Neptune

Figure 3.2: 〈σ〉Jovian>0.1 vs. velocity for each Jovian. In each graph, the red line is for a simulation

with Nemesis mass of 0 M�, green line is when Nemesis mass is 0.02 M� and the blue line is when

Nemesis mass is 0.08 M�. p(v) in these graphs is determined only by data Type I only (See Section

2.4).
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(a) 0 km/s ≤ v ≤ 20.0 km/s (b) 0 km/s ≤ v ≤ 2.0 km/s

Figure 3.3: 〈σ〉 for all for Jovian planets using both Type I and Type II data. Jupiter is the red

line, Saturn is the green line, Uranus is the blue line and Neptune is the purple line. Panel (a) the

velocity ranges from 0 to 20.0 km/s while in panel (b) the velocity ranges from 0 to 2.0 km/s.
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(a) Jupiter

(b) Saturn

Figure 3.4
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(c) Uranus

(d) Neptune

Figure 3.4: Expected number of encounters per crossing time that will result in a Jovian planet’s

eccentricity being excited to greater than 0.1, as a function of logMc and log Σc. As we can see, the

expected number of encounters is � 1 for all Jovian planets at all values of Mc and Σc.
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(a) Jupiter

(b) Saturn

Figure 3.5
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(c) Uranus

(d) Neptune

Figure 3.5: Probability that, in one crossing time, a Jovian will be excited to an eccentricity greater

than 0.1, as a function of logMc and log Σc. The probability of exciting a Jovian is very low across

the board, especially in a high mass cluster.
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(a) 0 km/s ≤ v ≤ 20.0 km/s (b) 0 km/s ≤ v ≤ 3.0 km/s

Figure 3.6: Effective impact parameter, b (see equation 3.1) for exciting a Jovian to eccentricity

greater than 0.1 vs. velocity of incoming star. Jupiter is the red line, Saturn is the green line,

Uranus is the blue line and Neptune is the purple line. At very low velocities, b is large. However,

at this low velocity, a small increase in velocity produces a dramatic decreases in b.
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3.2 Effects of Close Encounters on the Kuiper Belt

3.2.1 Exciting KBO orbits

The Kuiper Belt is home to Sedna, an object which is irregular for its kind (see Section 1).

We would like to know what is the probability that a close encounter was responsible for producing a

Sedna-like object. To do this, we first constructed p(v, n, d), where n is the number of KBOs excited

to an eccentricity between 0.5 and 1.0 in distance bin d (for our simulation, n goes from 0 to 40).

p(v, n, d) is constructed by taking the number of times n KBOs has an eccentricity greater than 0.5

but less than 1.0 from distance bin d at velocity v and dividing by the product of the total number

of runs at velocity v and forty (the number of KBO’s in each bin). From this we obtained 〈σ(v, n, d)〉

from equation 2.27 and then 〈σv〉nd from equation 2.3. We then calculated the total average cross

section times velocity at distance bin d by summing all the average cross sections times velocity for

a given n,

〈σv〉d =

40∑
n=1

n〈σv〉nd. (3.2)

From this, we were then able to calculate Λd from equations 2.4 and 2.5. With Λd, we then calculated

the probability of exciting at least x KBOs in a given distance bin by summing all of the P (k) for

k = x to k = 40, i.e.

Pd =

40∑
k=x

Λkde
−Λd

k!
. (3.3)

Figure 3.7 shows us the probability of exciting just one KBO to an eccentricity between

0.5 and 1.0 in the distance range of 35 AU to 80 AU and 455 AU to 500 AU. The probability of

exciting a KBO into a Sedna-like object in the 35 AU to 80 AU range is low (∼13%) for very low

mass, high Σ clusters, and the probability falls off as mass is increased, falling below 2% at about

104M�. The outer bin is more likely to produce a Sedna-like object. At the very low mass, high Σ

extreme, the probability is ∼80%, but as we increase the cluster’s mass we see that the probability

falls below 14% at 104M� and continues to drop.
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3.2.2 Stripping off KBOs

The Kuiper Belt shows a drastic drop in object density at about 50 AU, which is counter

to current understanding of solar nebula formation (see Section 1). Disk truncation by a close

encounter has been hypothesized as a candidate explanation for this phenomenon. To investigate

the validity of this hypothesis we create a p(v, n, d) that is very similar to the one constructed for

exciting KBOs. p(v, n, d) is equal to the number of times n KBOs have an eccentricity greater than

1.0 in distance bin d with velocity v divided by the product of the total number of runs at velocity

v and forty. We then calculate 〈σ〉d in the same manner as the excited KBOs (equation 3.2) and

then calculate the probability of losing x KBOs (equation 3.3).

Comparing the data in Fig. 3.8 to the data in Fig. 3.7, we see that in all cases, the probability

to lose KBO is just slightly smaller than the probability to excite the KBOs. Even further, to have

disk truncation, we would expect to see that a majority of the KBOs in the outer distance bins

would be lost while having a low probability within the inner distance bins. What we see is that

at the outer bins, there is a chance of losing 5% of the KBOs and exciting another 5%, but the

probability for affecting a large fraction of the KBOs is small. The probability of losing 50% in the

any bin is practically zero. We will note that our simulation is set up such that we assume that the

KBO’s eccentricity is zero before any close encounter. Thus, if our Solar System is in a region in

which we would expect to see multiple close encounters (Fig. 3.1), the effects of a close encounter

on a previously excited KBO is not taken into account in our simulation.
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Figure 3.7: The probability of exciting one KBO in the distance range of 35 AU to 80 AU (panel a)

and in the distance range of 455 AU to 500 AU (panel b).
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(a) Lost 5% with d=35-80 AU

(b) Lost 5% with d=455-500AU

Figure 3.8
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(c) Lost 10% with d=35-80 AU

(d) Lost 10% with d=455-500AU

Figure 3.8
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(e) Lost 50% with d=35-80 AU

(f) Lost 50% with d=455-500AU

Figure 3.8: This shows the probability that, in one crossing time, 5% (a and b), 10% (c and d) and

50% (e and f) of the KBOs in distance bin d will become unbound as a function of logMc and log Σc.

In all cases, the inner bin and the outer bin where the extreme values.
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3.3 Effects of Close Encounters on Nemesis

Finally, we would like to address the question, could Nemesis survive the birth cluster? To

answer this we began with 〈σ〉Nem which is constructed in a similar fashion as the Jovian planets.

From 〈σ〉Nem, we calculate ΛNem and PNem and plot the results in Figs. 3.9 and 3.10.

Figure 3.9: Expected number of encounters per crossing time that will result in Nemesis becoming

unbound from the Sun, as a function of logMc and log Σc. As we can see, the expected number of

encounters is < 1 at all values of Mc and Σc.

As shown in Fig. 3.9, although the number of encounters that will cause Nemesis to become

unbound is greater than the number expected to excite Jovian planet eccentricities, the expected

number is still < 1 in all cases of surface density and cluster mass. Furthermore, the probability

of Nemesis becoming unbound, shown in Fig 3.10, shows that stripping remains unlikely unless the

cluster is small and dense.
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Figure 3.10: Probability that, in one crossing time, Nemesis will become unbound, as a function of

logMc and log Σc. The probability of losing Nemesis is low except in low mass high density clusters.
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4 Conclusion

Adams (2010) argues for a lower bound of the birth cluster membership size based of

meteorite evidence and the upper bound based on estimates of the effects of cluster dynamics on the

Solar Nebula. The meteorite evidence suggests that a supernova deposited short lived radioactive

isotopes near the forming Solar System. However, the probability of having a supernova within the

range needed is only about 2% for Adam’s upper bound of the birth cluster membership size, ∼ 104

stars. Adams determined this limit based on his estimate that above this size that the density of

stars would have been so great as to guarantee an encounter with the impact parameter of 225 AU,

thus disrupting the eccentricities of the Jovian planets.

Our data suggest that as the mass of the birth cluster increases, the relative velocities of

the constituents increases and the effective impact parameters for Solar System-disrupting events

decreases. Given this knowledge, high mass birth clusters are less likely to disrupt the Solar Nebula,

and thus using cluster dynamics to determine an upper bound on the birth cluster’s membership

size would be in error. Figures 3.4 and 3.5 shows that the as the cluster mass increases, the expected

number of encounters and the probability decreases, yet the number of encounters within an impact

parameter of 2000 AU is independent of cluster mass. As cluster mass increases, the relative velocity

increases but the number of encounters does not, and therefore there will be less interaction time

between our Solar System and other stars within the cluster.

Given this, we feel we can remove the upper bounds to the membership size proposed by

Adams (2010) and suggest that cluster dynamics play a minimal role in the formation of the Solar



38

System. The removal of the upper bounds then allows us the cluster size to be large enough to be

able to produce massive star which can go supernova to seed the Solar System with the observed

short lived radioactive isotopes. With the upper bounds lifted, multiple supernovas can then be

used to seed the Solar Nebula, thus allowing the supernovas to be further away and exposing the

Solar System to less mass loss.

A close encounter within the birth cluster has also been proposed explain the existence of

Sedna (See Section 1). We have looked into the probability of exciting a KBO from an eccentricity

of zero to one between 0.5 and 1.0 (See Section 3.2.1). These results (shown in Fig. 3.7) show

that the chances for exciting at least 5% of the KBOs with initial semi-major axis of 35-80 AU is

less than 1%. However the probability of exciting at least 5% of the KBOs within the distance of

455-500 AU is ∼75% at the low mass, high surface density extreme, but quickly falls to less than

1% in intermediate mass clusters. This shows that producing a Sedna-like object is favored in the

low mass and higher density clusters. However, it is unlikely that Sedna was produced in a close

encounter in the mass range where a supernova is likely to happen.

We also looked into the concept of a close encounter stripping off outer KBOs to explain

to the sudden density drop in KBO objects at 45 AU (See Section 1). Again, our data shows that in

the low mass, high surface density extreme, there is a reasonable chance of losing at least 5% of the

KBOs in the outer distance bin, but less than 1% chance of losing at least 5% of the KBOs in the

inner distance. However, the probability of losing half of the KBOs in the outer distance bin on the

order of 10−12, even for the low mass, high surface density extreme case that is most favorable for

stripping. This clearly shows that it is highly unlikely for a close encounter to truncate the Kuiper

Belt.

The effects of cluster dynamics on the existence of Nemesis is inconclusive. The probability

of losing Nemesis in low mass, high surface density clusters ∼ 32%, but for all other situations the

probability is < 10%. Given that we placed Nemesis at 1000 AU, far below the theorized semi-

major axis of 33,000 AU to 88,000 AU, the probability of losing Nemesis should increase as Nemesis
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becomes further from the Sun, and thus we can make no conclusion as to the viability of Nemesis

within the birth cluster.
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