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Abstract  

Stimulus Software Redevelopment For Large Scale Retinal Response Activity 
 

By 
 

Anastassia Tolpygo 

 

A possible replacement method of the visual stimulus algorithm is explored to update 

experimental techniques in large-scale recording of retinal output activity. In particular, 

emphasis is placed on Matlab interpreted language with the Psychtoolbox platform. The benefits 

and limitations of the favored alternative are studied using coding manipulation and performance 

diagnostics supported by graphical data. Timing accuracy and hardware handshaking are 

essential aspects of the stimulus, in turn part of the overall recurrent cycle of the experiment. 

This accuracy is needed for a precise white-noise analysis method of action potentials in live 

retinal tissue samples. The retinal ganglion cells perform much processing before transmitting 

the information to the visual cortex via optic nerve. Such experimentation has helped classify 

retinal neurons helping further investigation of the central nervous system and its wonders. 
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1  

Introduction 

1.1 Biological Background 

 

The brain and spinal cord control and govern most functions of all living creatures. 

Together they are referred to as The Central Nervous System (CNS), a vast network of 

neuronal cells, all communicating with signals in specific patterns to execute functional 

or reflexive tasks. Between neurons, these patterns resemble pathways, as each signal has 

specific starting point and a target. This signal has been defined as an action potential 

(AP) and is a self-regenerating wave of electrical energy. [1] An AP is initiated in a 

neuronal cell body, at the axon hillock, and propagates to the terminus of the axon. [1] 

Each AP will travel down an axon of a neuron until it reaches its final destination at the 

end where the cell membrane forms a synapse with another cell.   

The location at which two neurons interact is called the synaptic cleft and most 

commonly is an axon of the pre-synaptic cell converging at a dendrite of the post-

synaptic cell. Once it reaches the end of the axon, the AP will cause the release of various 

neurotransmitters which will flow out into the cleft. This process can either increase or 

decrease the electrical potential in the membrane of the post-synaptic cell, depending on 

the transmitter released. Hyper- or de-polarization sensed by ion specific channels may 

increase or decrease the probability of an AP to spike and propagate through the post-

synaptic cell; it may also cause other internal changes. The neurotransmitter process and 

cell anatomy is shown in Fig. 1.1. 
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Figure 1.1 Large scale representation of a typical neuron with a close up 
 of the synaptic cleft, adapted from http://www.ieaecell.org/epilepsy-02.html 
 

 If the membrane‟s voltage increases enough to reach the threshold, it will spike. Other 

channels will then open letting positive ions out of the cell to depolarize it until 

equilibrium is reached and the potential drops back to resting state. Ion concentrations 

controlling the opening and closing of channels clearly affect the permittivity of the cell 

membrane, thus this is known as „voltage-dependent membrane permeability‟. The 

change in voltage or a spike is shown in Fig. 1.2 below. 

 

 

 

 

 
 
 
 

 
Figure 1.2 A representation of change in membrane voltage  
versus time with rising and falling phases and the threshold 
 voltage emphasized, adapted from 
http://en.wikipedia.org/wiki/File:Action_potential_vert.png 
 

As can be seen in Fig.1.2, not all stimuli cause the cell to fire as the voltage must exceed 

the threshold. The permeation of action potentials stops at the cell or causes other internal 

http://www.ieaecell.org/epilepsy-02.html
http://en.wikipedia.org/wiki/File:Action_potential_vert.png
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changes if it isn‟t surpassed. This operation continues through many circuits of neurons 

responsible for different tasks. The retina is a small gateway circuit of the CNS between 

the eye and visual cortexes, and has three  types of neurons; Photoreceptors, Intermediate 

cells, and Retinal Ganglion Cells (RGCs). With interest to classify such cells by 

functionality, research of large scale retinal voltage activity has given insight into the 

overall operation of the CNS and complex brain processing. 

 

1.2 History of Research  

 

There have been a number of ways developed to measure the potential of a neuronal 

cell. Commonly used in electrophysiology, the voltage clamp method measures ion 

currents across a cell while holding the membrane voltage constant. Similarly, the current 

clamp method measures membrane voltage with constant ion current held. Another more 

complex method is the patch clamp method, which detects the current of just one ion 

channel by isolating it with a clamp. Though very useful, these methods ultimately only 

observe the current and voltage changes of one cell. As mentioned earlier, the CNS 

functions via broad circuits of neurons rather than individual cells. Hence, it is valuable 

to study neuronal activity on a larger scale, considering 'The Big Picture‟ of one or 

another circuit. This may be done using multiple electrodes at once, positioned outside 

cells. The placement of the electrodes is important for a sufficient signal to noise ratio; 

the closer the electrode is to a cell, the larger and more detailed the signal detected from 

it. Extracellular multi-electrode array recording has become the ideal way to achieve 

simultaneous recording of many cells. A large number of electrodes increases the 
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efficiency in a reading, sometimes with spacing comparable to the cells themselves; 

electrodes spacing as close as sixty microns. This method proves to be more useful in 

studying networks of neurons and has thus far helped comprehensively describe five and 

identify one of a couple dozen morphologically distinguished RGCs in the primate retina. 

“The action potential generated by the cell produces local ionic currents in the saline 

solution the retina rests on top, which in turn produce a local potential at the site of the 

electrode [2].” The hardware design for gathering data with multiple electrodes was 

inspired by high-energy particle detection; commonalities between silicon strip detectors 

and electrodes include dense spacing and ability to record low magnitude signals.  

 

1.3 Hardware 

 

 As mentioned above, “the technology employed is based on silicon microstrip 

detector techniques and expertise developed for experiments in high-energy physics [3].” 

The application specific integrated circuit, or ASIC, is the common denominator relating 

the two fields of research. Specifically in signal acquisition, where for particle detection a 

silicon strip detector is mounted onto a PCB, an array of 512 electrodes is mounted on a 

similar board for the Neuroproject, called the Neuroboard [3]. In both cases, the signals 

to be gathered are nominally of small magnitude and dense spacing. These characteristics 

call for immediate amplification and filtering, which is performed directly with the 

preliminary electronics rather than with other detached hardware through which smaller 

waveforms may get lost in noise. The Neuroboard is the main piece of equipment that 

handles these functions. In Fig.1.3 the array of rectangular dimension 32 x 16 electrodes 
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resides in the middle, surrounded by eight Platchips and eight Neurochips. “Each Platchip 

has 64 channels of 150-pF capacitors for ac-coupling the electrode signal to the 

corresponding Neurochip channel [3].” Every Platchip also has a current generator 

electroplate the probes with platinum to reduce the impedence between the electrode and 

tissue and circuitry to provide a current pulse for neuron stimulation. [3] Subsequently, 

the Neurochip has 64 channels that differentially pre and post amplify as well as filter the 

signal, finally driving it out through a 64:1 multiplexer. The band pass range is nominally 

within 80-2000 Hertz.  

 
Figure 1.3 The Neuroboard at approximately 25.5cm  in length, adapted from Litke et al[3]. 
 

Surrounding these main components are resistors that divide voltage to supply controlled 

current to each Neurochip and capacitors that filter noise. These smaller components are 

all surface mounted and were precisely soldered for six upgraded boards over the course 
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of a summer. The experimental technique is based on the work of Meister et al. and is 

schematically represented by Fig.1.4 [4]. 

 

1.4 Stimulating the Retina 

 

The retina works as a processing relay between the visual world and the brain. 

Photoreceptive cells convert kinetic energy of the incoming photons into chemical energy 

to activate a train of reactions to the main neurons in the retina, the RGCs. After 

significant processing, RGCs‟ action potentials carry visual information to various targets 

in the brain via optic nerve. In order to identify and measure the functional specificity of 

the retina on a broad scale, a micro-electrode array (Fig.1.3) gathers the electrical output 

of RGCs induced by a visual stimulus or movie projected onto the retina (Fig.1.4).  

 

 
 
 

Figure 1.4 Experimental setup, adapted from Litke et al [3] 
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The stimulus in this case, is presented on a monitor using a computer running modifiable 

code specific to the desired stimulus.  

Furthermore, the retina is a high functioning, complexly responsive unit which 

makes interpretation difficult. Primarily, the direct cause, or stimulus that triggers a 

certain behavior or spike train should be well known for accurate analysis. Hence, the 

stimulus presented has to be timely and very precise; which becomes a non-trivial 

software and hardware correlation task. Such an implication can complicate data analysis 

if the presentation time of a frame and its triggered RGC response timing do not 

correspond. Various tests and diagnostics were performed in order to track the precision 

of the algorithm by investigating the average time between each frame shown. These 

were done using a standard white noise stimulus which is discussed in detail in Section 

1.5.  

White noise stimulus is one stimulus technique in exploring the response 

properties of spiking visual system neurons [5]. This somewhat simple yet distinct 

stimulus offers the possibility to mildly stimulate many RGCs using variation in intensity 

and wavelength, thus generating a wide range of spatial, temporal and chromatic response 

characteristics. “It provides a complete and easily interpretable model of responses even 

for neurons that display a common form of response nonlinearity that precludes classical 

linear systems analysis [5].”  
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1.5  STA Analysis and White Noise Stimulus 

 

As previously discussed, white noise is most commonly implemented as stimulus 

for studying retinal activity, causing a wide variety of responses. “As it is stochast ic, 

highly interleaved,  can span a wide range of visual inputs, is robust to fluctuations in 

response characteristics, and does not affect cell adaptation to strong or prolonged 

stimuli, this type of visual stimulant is well suited to simultaneous measurement of 

multiple neurons and has many advantages to other types [5].” Applied along with a 

refined mathematical method called Spike-Triggered Average, or (STA) that estimates 

the stimulus-cell response relationship, this method is useful for investigating circuits of 

neurons. For the retina, complex and nonlinear filtering of incoming information is the 

motivation behind the STA analysis. Each RGC responds to and processes particular 

parts of any given input. This functioning is similar to the encoding done by analog-to-

digital converters together with band-pass filters to isolate specific parts of incoming 

information. Unlike conductors that simply pass or store information, RGCs filter and 

manipulate it so as to translate into a language a specific neural circuit can interpret.  

A typical white noise frame is shown in Fig.1.5, a small portion of that frame that 

an RGC is sensitive to is called the receptive field. The response properties of that RGC 

are estimated using basic linear algebra for STA analysis. Reactions are due to certain 

parameters of encoding in a retinal cell. Such as location and size of each cell‟s special 

receptive field, range of detectable stimulus time frequency and the preferred variation in 

intensity and saturation. These are known as spatial, temporal and chromatic response 

properties of the retina respectively [5]. One RGC may have sensitivity in all or just one 
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of these properties, ignoring everything except very distinct bits of information. This 

response distinction is achieved using white noise stimulus, because its intent is to project 

all the combinations of spectrum, time frequency and sizes possible of any receptive 

field. Determined by a normal distribution, these combinations vary through frames 

during prolonged running experiments. 

  
Figure 1.5 An example frame of white noise  
stimulus at a large Scale factor. 
 

Consequently, STA analysis or reverse correlation will look at one cell‟s electrical 

activity and average the frames prefacing action potentials in order to calculate the 

parameters that cause them. STA stimulus is defined as the average stimulus preceding a 

spike in the cell, i.e. “the sum of the stimuli before each response, divided by total 

number of spikes [5].”  

        (1)                                      
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The vector st is defined as the stimulus at a given time t and ft is the spike count in the 

time immediately following this stimulus [5]. There is dependency in the response f on 

the stimulus s, defined as the expected response R(s): 

.   (2) 

Here, P is the probability of stimulus s firing and producing a response f. It is also 

assumed the history of responses has no effect on this expression, which means, that the 

spikes are generated by a Poisson process with a mean parameter equal to R [5]. As an 

example, consider that the total response current in a neuron depends linearly in the 

stimulus, but spike probability has nonlinear dependence on current due to the physiology 

of the ion channels that control spike generation [5]. R(s), known as the static nonlinear 

model of response will incorporate such a discrepancy.  

The numerator and denominator of equation (1) can be divided by the total 

recording time T. Taking T to infinity; the denominator becomes the „average firing rate‟ 

and assumes a nonzero limit <f>. The same limit is assumed for the numerator. Hence, 

for large values of T, using equation (1) and (2) and simplifying with the use of the 

probability identity P(s & f) = P(s)P(f|s), the STA can be rephrased. 

       (3) 

“Thus, the STA approaches a sum of stimulus vectors, each weighted by its probability 

and the average response it induces, normalized by the average firing rate [5].”  

As is evident, the STA approximation is heavily dependent on a timing accuracy 

of the stimulus frames, proportional to the firing rate, or frequency of spikes in a response 

train. Therefore, the nominally trivial monitor refresh rate and projected frame rate 
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become of utmost importance in this experiment. Since, the stimulus is generated by a 

computer program; its accuracy should be accounted for in that algorithm.   

 

 

2  

The Need to Revamp Preexisting Software and 

Hardware 

 

As previously mentioned, a good way to interpret the functionality of a neural 

circuit is simultaneously, from many neurons. The “Neuroproject” does just that by using 

high energy physics instrumentation together with neurobiological experimentation and 

statistical data analysis to probe the mysteries of the CNS and the retina. Overall, the 

process is a flow of information through hardware and software paths. Initially, visual 

stimulus is presented to the retina. The data aquisition computer initiates the start of the 

stimulus program via a TTL pulse to the stimulus computer. The retina will „see‟ the 

movie and react accordingly to the various parameters of a white noise stimulus. It rests 

on top of a 512 microelectrode array, where RGC spikes are captured by the electrodes. 

As discussed in Section 1.3, the array is mounted onto the Neuroboard. After being 

filtered and amplified within the circuitry, the signals are finally digitized back in the data 

acquisition PC which processes the incoming information with LabView. The existing 

hardware to software synchronization is a TTL pulse. It is sent from the stimulus to the 
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DAQ computer every 100 frames displayed in order to monitor the accuracy of the 

stimulus timing, mentioned in Section 2.1.  

In general, the stimulus is generated with an algorithm implementing a pseudo-

random number generator that will return a number between 0-256. The image created is 

an NxM matrix of „stixels‟ each representing one random number and is visually 

described by Fig.1.5. A stixel is a predetermined square area of pixels all taking on the 

same random value, short for the „stimulation pixel‟. Each random value represents a 

grayscale color, 0 being black and 255, as white. Though irrelevant to this thesis, a stixel 

can also have an RGB value with three random numbers for each stimulation pixel, also 

on the scale of 0 – 255, 255 representing the most saturated color value. A matrix is 

calculated for every frame projected on a screen at some update rate which should be in 

sync with the monitor refresh rate. This „on the fly‟ calculation takes minimal memory 

space and has become the preferred generating method due to the wide range of possible 

stimuli with variable parameters for any experimental duration and scaling.  

 

2.1  Methods 

 

Currently, the stimulus uses a MacOS-9 running on MacG4 with the stimulus 

produced using an older computer language Lisp together with C and is shown on a Sony 

Trinitron MultiscanE100 monitor. This system was originally implemented for many 

reasons, the prominent feature being the ability to turn system interrupts off, which 

prohibits the computer from running other functions during a stimulus presentation. The 

need for newer and faster hardware is now eminent and unfortunately, none of the 
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replacement options have such control as it is a feature of MacOS-09 only. Within the 

existing code, there is also some monitoring of the stimulus accuracy checking for  

„missed frames‟, defined in Section 2.3, which is communicated back to the data 

acquisition computer via TTL pulse. Other experimenters in the field, such as Michael 

Stryker at UCSF, have begun using Matlab7.x along with a software package called 

Psychtoolbox-3 or PTB-3.  "Matlab is a high-level interpreted language with extensive 

support for numerical calculations. The Psychophysics Toolbox interfaces between 

Matlab and the computer hardware. The Psychtoolbox's core routines provide access to 

the display frame buffer and color lookup table, allow synchronization with the vertical 

retrace, support millisecond timing, and facilitate the collection of observer responses 

[6].” PTB-3 also offers many demo programs with various examples of stimuli. The most 

compatible one offered is the „Fast Noise Demo‟ (FND), which renders white noise. 

Formation of the image is also done with pseudo-random number generator, with each 

number representing the grayscale value of a stixel, named noisel in the original code 

[Appendix A]. There are two functions most responsible for this illustration; 

Screen(„Flip‟) with built in time monitoring and Screen(„MakeTexture‟). The former flips 

the screen display from the current frame to the next while maintaining an update rate 

that is in sync with the vertical retrace of the monitor. The later converts the NxM matrix 

of random numbers into a stixel image. With these functions two adjustable variables 

arise; Scale determines the square area of pixels in a stixel and RectSize, the stixel 

dimension of the matrix. Though this new system is user friendly and manageable with 

upgraded hardware, problems with timing accuracy still take place. An exploration of 

these issues follows.  
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3  

Problems and Diagnostics of Psychtoolbox 

 

Unlike the older operating system, PCs intended to replace the stimulus control do 

not have system interrupts. Without this crucial feature, a computer has freedom to 

decide whether an execution is vital or not and bypass it in order to run updates, scans, 

etc. If per say, stimulus is running and the operating system needs to execute one of these 

internal maintenance functions, the stimulus may lose priority and a frame will not get 

flipped in time and will stay displayed past the monitor refresh. This is referred to as 

missing of a frame and can also occur when the computer simply does not have enough 

time to calculate the NxM random value matrix and misses the opportunity to change the 

image. Whereas, instead of displaying one frame for 11.7 milliseconds with the 

corresponding 85Hz monitor refresh interval, the frame will remain on the screen for 23.4 

millisecond or longer, this is investigated in detail in Section 3.2. As discussed earlier, 

this is an enormous problem for the STA analysis, which relies heavily on the precise 

time correlation between stimulus and response. To clarify, it is of utmost importance to 

know exactly which frame precedes a certain response from an RGC in the form of action 

potentials. If for instance, a spike is assumed to be a result of some frame, timing of that 

frame must correlate exactly prior to that spike. Otherwise, it is impossible to understand 

what may or may not cause an RGC to spike. If it is impossible to produce perfect 

stimuli, it is helpful to at least monitor the existence and occurrence of missing frames to 

adjust analysis accordingly.  
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3.1 Investigating Update Rate 

 

As an initial experiment, the Fast Noise Demo was executed multiple times with 

varied Scale and RectSize in order to observe the accuracy limitations of the update rate. 

Timing data was acquired using the built-in GetSecs timestamp, which keeps track of the 

system time at the start and end of the stimulus and „count‟ which is the number of 

frames displayed. This was done for two computers with different hardware and software 

specifications. Figure 3.1 is that of a an older Windows XP Pro on a Dell Precision 

Workstation 650 with an Intel® Xeon™ 2.66GHz, double CPU processor and display on 

Dell M991 Monitor using a Radeon 700 series video card. This specific setup was studied 

with an 800 x 600 resolution setting and a monitor refresh interval of 85Hz. As seen in 

Fig.3.1, the x-axis is the stixel dimension of the noise patch and the y-axis is the returned 

update rate in Hertz. It is most evident that a plateau of the update rate exists, where 

neither scale nor rectSize affect the overall timing performance. Unfortunately, with more 

complex or larger stimuli, this accuracy breaks down and the update rate looses precision. 

In fact, it lessens to approximately half of the monitor refresh rate, analogous to the 

computer missing one display sweep and waiting for the next one. This will result in 

frames displayed every other monitor refresh. The cause of this is rather intuitive as the 

computer has more random numbers to calculate with larger noise matrices yet in the 

same time period. In Fig.3.1, this happens at about 200 by 200 stixels. Peculiarly, at the 

smallest scale setting of one, the timing breakdown arises at a larger square stixel 

specification. Though the patch dimension is the same with the equal amount of numbers 
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to generate, further investigation could not be conducted due to software malfunction. 

Figure 3.2 depicts a similar pattern gathered from a Windows XP Pro Dell Precision 

Workstation690 with Intel® Xeon® 2.66GHZ, quadruple CPU processor using NVIDIA 

Quadro NVX235 video card. The display ran on a Sony Triniton MultiscanE100 monitor 

with the highest possible refresh interval of 60 Hertz, though a less direct comparison. In 

this case, the falloff occurs later to agree with the assumption that the newer video card 

and computer are faster. 

 
  Figure 3.1 Update rate frequency versus patch size, varying in scale with a  
monitor refresh rate of 85Hz. 

 
Figure 3.2 Plateau at set monitor refresh rate of 60Hz. Consistent break down 
of update rate to half of monitor refresh rate at approximately 400 square stixels. 
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The data above observes computing limitations the replacement technique may have. If 

the stimulus frames cannot flip in sync with the vertical retrace of the monitor, frames 

will be missed.  

 

3.2 Timestamps and Missed Frames 

 

 Given the certain range of parameters that guarantee an accurate update rate found 

in Fig.3.1 and Fig.3.2, it is important to verify timely frame display within those 

restrictions. Consequently, the discovered falloff region was studied to see how many 

frames exactly were missed as well as the possibility to track them. Using the returned 

update rate and some additional code [Appendix B], missed frames were counted and 

recorded for the newer computer at a scale of three, a monitor refresh rate of 60Hz and a 

resolution of 800x600 pixels. According to previous measurements, scaling of 400 and 

above was expected to miss many more frames, so the duration of the experiment was 

reduced. The results are shown in Table 3.1. 

Frame count/duration RectSize Number of Missed Frames 

100,000/30mins 200 2 

100,000/30mins 300 0 

100,000/30mins 400 1 

18,000/5mins 500 18000 

Table 3.1 Missed frames at various dimensions. 

The most important outcome here is the plateau region performing with almost ideal 

accuracy resulting in little to no missed frames. Though, as soon as the noise patch 
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increased to 500 by 500 every single frame was delayed, since the frame count was 

18000. That difference between 160,000 and 250,000 random numbers to be generated 

forces the computer to spend more time calculating the NxM matrix which turns out to be 

slower than the monitor refresh rate. This is a computational restriction to be considered 

when choosing stimulus parameters since the computer lags behind the desired display 

change frequency. 

Next, the original Fast Noise Demo was modified using preexisting timestamps. 

Along with Screen(„Flip‟), the algorithm can monitor the timing between frames for 

various stimuli specifications using VBLTimestamps. As previously stated, the major 

functionality of Screen(„Flip‟) is to switch an existing front display with an anticipated 

back display in sync with the vertical retrace of the monitor while tracking system time 

when the actual flip has happened as a VBLTimestamp return argument. FlipTimestamp 

is another one taken at the end of „Flip‟ execution. As can be seen in the modified code 

[Appendix B], these time stamps were implemented for every count, at the start of each 

displayed frame. The inverse of the update frequency defines  the ideal duration that a 

frame ought to be shown, 

          .     (4) 

 Hence, as mentioned earlier, at an 85Hz monitor refresh rate a frame should be displayed 

for approximately 11.7 milliseconds. With this definition, if a frame is missed, it can only 

be flipped at the next monitor refresh. So, its display time becomes a multiple of the 

expected time, 

     ∆T = CT.     (5) 
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In this definition C is some whole number, depending on how delayed the flip is. As with 

most software timing, there will be some error to this exact calculation, where the 

timestamp will be taken slightly prior to or after the display flip, which accounts for the 

distribution in Fig.3.3. Using the built in Matlab histogram function and defining the 

interval between timestamps as the bins, timing within the plateau region was studied. 

Figure 3.3 shows a histogram of four built in PTB timestamps representing a stable 

stimulus with no missing frames but with subtle jitter around the expected time, defined 

by equation (4). Due to its accuracy, VBL timestamp was most useful for this 

experiment. Figure 3.4 shows a histogram of a small number of missed frames with the 

display interval up to double the expected amount.  
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Figure 3.3 Histograms from different time stamps; StimulusOnset and VBL are identical. 
Note Flip and GetSecs are precise but lack distribution accuracy and were therefore less 
useful. The x-axis in all the histograms is in seconds but with only three significant figures 
max display option. The y-axis represents the number of frames displayed at the intervals.  
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Figure 3.4 At double the expected interval, corresponding to half the monitor refresh rate, a 
few counts are seen. For  the VBL time stamp there are a small number of counts with the 
display duration of  23.4 microseconds, which is more obvious when taking the y-axis into 
logarithmic scale.  
 

This diagnostic was also taken at a dimension of 32x16 stixels, corresponding to the size 

and shape of the electrode array, and can be seen in Figure 3.5. 
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Figure 3.5 As expected, within the plateau region of zero to approximately 400 scaling, VBL 
timestamps are still accurate and in sync with the monitor refresh rate.  
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Though rather conservative, the results above give some insight into the software 

performance limitations in a new stimulus system intended for the Neuroproject upgrade. 

If missed frames are unavoidable, the ability to at least observe their occurrence is the 

next best thing. With the incidence of a missed frame known, the analysis can be 

modified accordingly.  
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4 

Discussion 

 

In the last twenty-some-odd years, retinal output activity investigation has been 

able to classify a number of retinal ganglion cells using simultaneous multi-electrode 

recording. The 512 electrode technique first used in 2003/04 and has since made the 

classification of another RGC possible. Numerous stimulation methods have been 

utilized, concluding Spike Triggered Average as the most enlightening for studying 

action potentials of retinal ganglion cells. Santa Cruz Institute of Particle Physics with the 

Biology department at University of California, Santa Cruz is the site of such 

collaboration under the guidance of Alan Litke, Alexander Sher and others. Currently, the 

project is undergoing a make-over of hardware and software systems. The hardware to 

software relay coding and electronics progress was possible with the help of Daniele Fusi 

and Vitalyi Fedeyev. With the outdated Lysp/C stimulus code providing many useful 

control functions, a robust yet accessible replacement system is needed. Matlab with the 

Psychtoolbox platform poses a good option, but as any technology has accuracy 

limitations; specifically in display exactness and time monitoring. FastNoiseDemo of 

white noise, used for STA, was mainly implemented in examining these problems in 

search of possible solutions and general adequacy of Matlab as alternate stimulus 

software for the Neuroproject. There is still much work to be done, such as a brand new 

code, rather than a provided demo. Also, the exact occurrence of a missed framed should 

be obtainable within the algorithm to drive precise analysis of action potential trains 
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recorded from live retinal samples. In order for Psychtoolbox to become the primary 

stimulus source, issues with timing and synchronization need to be addressed. The above 

results that I have gathered, have helped understand the issues in renewing the stimulus 

technique. It became evident that calculation limitations occur at a certain complexity of 

stimulus, which may be fixable with a faster processor. Also, with the scaling breakdown 

shown in Fig.3.1, video card limitations came to light. Perhaps, a faster computer and a 

more advanced video card together will supply timely and accurate stimulus without 

missing frames. Although if that does happen, it should be well addressed in analysis in a 

way to compensate or eliminate the error. Overall, with well developed software and 

hardware alterations, more refined classification of other RGCs and neurons of the CNS 

will be possible. Lastly, the newer Neuroboards, mentioned in Section 1.3, I contributed 

in surface mounting are currently being used in experiments.  
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6  
 
Appendix 
 
A Fast Noise Demo Original Code [6] 

 
function FastNoiseDemo(numRects, rectSize, scale, syncToVBL, 

dontclear) 

% FastNoiseDemo([numRects=1][, rectSize=128][, scale=1][, 

syncToVBL=1][, dontclear=0]) 

% 

% Demonstrates how to generate and draw noise patches on-the-fly in 

a fast way. Can be 

% used to benchmark your system by varying the load. If you like 

this demo 

% then also have a look at FastMaskedNoiseDemo that shows how to 

% efficiently draw a masked stimulus by use of alpha-blending. 

% 

% numRects = Number of random patches to generate and draw per 

frame. 

% 

% rectSize = Size of the generated random noise image: rectSize by 

rectSize 

%            pixels. This is also the size of the Psychtoolbox noise 

%            texture. 

% 

% scale = Scalefactor to apply to texture during drawing: E.g. if 

you'd set 

% scale = 2, then each noise pixel would be replicated to draw an 

image 

% that is twice the width and height of the input noise image. In 

this 

% demo, a nearest neighbour filter is applied, i.e., pixels are just 

% replicated, not bilinearly filtered -- Important to preserve 

statistical 

% independence of the random pixel values! 

% 

% syncToVBL = 1=Synchronize bufferswaps to retrace. 0=Swap 

immediately when 

% drawing is finished. Value zero is useful for benchmarking the 

whole 

% system, because your measured framerate will not be limited by the 

% monitor refresh rate -- Gives you a feeling of how much headroom 

is left 

% in your loop. 

% 

% dontclear = If set to 1 then the backbuffer is not automatically 

cleared 
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% to background color after a flip. Can save up to 1 millisecond on 

old 

% graphics hardware. 

% 

% Example results on a Intel Pentium-4 3.2 Ghz machine with a NVidia 

% GeForce 7800 GTX graphics card, running under M$-Windows XP SP3: 

% 

% Two patches, 256 by 256 noise pixels each, scaled by any factor 

between 1 

% and 5 yields a redraw rate of 100 Hz. 

% 

% One patch, 256 by 256 noise pixels, scaled by any factor between 1 

% and 5 yields a redraw rate of 196 Hz. 

% 

% Two patches, 128 by 128 noise pixels each, scaled by any factor 

between 1 

% and 5 yields a redraw rate of 360 - 380 Hz. 

%  

% One patch, 128 by 128 noise pixels, scaled by any factor between 1 

% and 5 yields a redraw rate of 670 Hz. 

 

% Abort script if it isn't executed on Psychtoolbox-3: 

AssertOpenGL; 

 

% Assign default values for all unspecified input parameters: 

 

if nargin < 1 || isempty(numRects) 

    numRects = 1; % Draw one noise patch by default. 

end 

 

if nargin < 2 || isempty(rectSize) 

    rectSize = 128; % Default patch size is 128 by 128 noisels. 

end 

 

if nargin < 3 || isempty(scale) 

    scale = 1; % Don't up- or downscale patch by default. 

end 

 

if nargin < 4 || isempty(syncToVBL) 

    syncToVBL = 1; % Synchronize to vertical retrace by default. 

end 

 

if syncToVBL > 0 

    asyncflag = 0; 

else 

    asyncflag = 2; 

end 

 

if nargin < 5 || isempty(dontclear) 

    dontclear = 0; % Clear backbuffer to background color by default 

after each bufferswap. 

end 

 

if dontclear > 0 
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    % A value of 2 will prevent any change to the backbuffer after a 

    % bufferswap. In that case it is your responsibility to take 

care of 

    % that, but you'll might save up to 1 millisecond. 

    dontclear = 2; 

end 

 

try 

    % Find screen with maximal index: 

    screenid = max(Screen('Screens')); 

 

    % Open fullscreen onscreen window on that screen. Background 

color is 

    % gray, double buffering is enabled. Return a 'win'dowhandle and 

a 

    % rectangle 'winRect' which defines the size of the window: 

    [win, winRect] = Screen('OpenWindow', screenid, 128); 

         

    % Compute destination rectangle locations for the random noise 

patches: 

     

    % 'objRect' is a rectangle of the size 'rectSize' by 'rectSize' 

pixels of 

    % our Matlab noise image matrix: 

    objRect = SetRect(0,0, rectSize, rectSize); 

 

    % ArrangeRects creates 'numRects' copies of 'objRect', all 

nicely 

    % arranged / distributed in our window of size 'winRect': 

    dstRect = ArrangeRects(numRects, objRect, winRect); 

 

    % Now we rescale all rects: They are scaled in size by a factor 

'scale': 

    for i=1:numRects 

        % Compute center position [xc,yc] of the i'th rectangle: 

        [xc, yc] = RectCenter(dstRect(i,:)); 

        % Create a new rectange, centered at the same position, but 

'scale' 

        % times the size of our pixel noise matrix 'objRect': 

        dstRect(i,:)=CenterRectOnPoint(objRect * scale, xc, yc); 

    end 

 

    % Init framecounter to zero and take initial timestamp: 

    count = 0;     

    tstart = GetSecs; 

 

    % Run noise image drawing loop for 1000 frames: 

    while count < 1000 

        % Generate and draw 'numRects' noise images: 

        for i=1:numRects 

            % Compute noiseimg noise image matrix with Matlab: 

            % Normally distributed noise with mean 128 and stddev. 

50, each 

            % pixel computed independently: 
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            noiseimg=(50*randn(rectSize, rectSize) + 128); 

 

            % Convert it to a texture 'tex': 

            tex=Screen('MakeTexture', win, noiseimg); 

 

            % Draw the texture into the screen location defined by 

the 

            % destination rectangle 'dstRect(i,:)'. If dstRect is 

bigger 

            % than our noise image 'noiseimg', PTB will 

automatically 

            % up-scale the noise image. We set the 'filterMode' flag 

for 

            % drawing of the noise image to zero: This way the 

bilinear 

            % filter gets disabled and replaced by standard nearest 

            % neighbour filtering. This is important to preserve the 

            % statistical independence of the noise pixels in the 

noise 

            % texture! The default bilinear filtering would 

introduce local 

            % correlations when scaling is applied: 

            Screen('DrawTexture', win, tex, [], dstRect(i,:), [], 

0); 

 

            % After drawing, we can discard the noise texture. 

            Screen('Close', tex); 

        end 

         

        % Done with drawing the noise patches to the backbuffer: 

Initiate 

        % buffer-swap. If 'asyncflag' is zero, buffer swap will be 

        % synchronized to vertical retrace. If 'asyncflag' is 2, 

bufferswap 

        % will happen immediately -- Only useful for benchmarking! 

        Screen('Flip', win, 0, dontclear, asyncflag); 

 

        % Increase our frame counter: 

        count = count + 1; 

    end 

 

    % We're done: Output average framerate: 

    telapsed = GetSecs - tstart 

    updaterate = count / telapsed 

     

    % Done. Close Screen, release all ressouces: 

    Screen('CloseAll'); 

catch 

    % Our usual error handler: Close screen and then... 

    Screen('CloseAll'); 

    % ... rethrow the error. 

    psychrethrow(psychlasterror); 

end 
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B Modified Fast Noise Demo Code 

 
function FastNoiseDemo(numRects, rectSize, scale, syncToVBL, 

dontclear) 

% FastNoiseDemo([numRects=1][, rectSize=128][, scale=1][, 

syncToVBL=1][, dontclear=0]) 

% Demonstrates how to generate and draw noise patches on-the-fly in 

a fast way. Can be 

% used to benchmark your system by varying the load. If you like 

this demo 

% then also have a look at FastMaskedNoiseDemo that shows how to 

% efficiently draw a masked stimulus by use of alpha-blending. 

% numRects = Number of random patches to generate and draw per 

frame. 

% 

% rectSize = Size of the generated random noise image: rectSize by 

rectSize 

%            pixels. This is also the size of the Psychtoolbox noise 

%            texture. 

% 

% scale = Scalefactor to apply to texture during drawing: E.g. if 

you'd set 

% scale = 2, then each noise pixel would be replicated to draw an 

image 

% that is twice the width and height of the input noise image. In 

this 

% demo, a nearest neighbour filter is applied, i.e., pixels are just 

% replicated, not bilinearly filtered -- Important to preserve 

statistical 

% independence of the random pixel values! 

% 

% syncToVBL = 1=Synchronize bufferswaps to retrace. 0=Swap 

immediately when 

% drawing is finished. Value zero is useful for benchmarking the 

whole 

% system, because your measured framerate will not be limited by the 

% monitor refresh rate -- Gives you a feeling of how much headroom 

is left 

% in your loop. 

% 

% dontclear = If set to 1 then the backbuffer is not automatically 

cleared 

% to background color after a flip. Can save up to 1 millisecond on 

old 

% graphics hardware. 

% 

% Example results on a Intel Pentium-4 3.2 Ghz machine with a NVidia 

% GeForce 7800 GTX graphics card, running under M$-Windows XP SP3 

% 

% Two patches, 256 by 256 noise pixels each, scaled by any factor 

between 1 

% and 5 yields a redraw rate of 100 Hz. 
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% 

% One patch, 256 by 256 noise pixels, scaled by any factor between 1 

% and 5 yields a redraw rate of 196 Hz. 

% 

% Two patches, 128 by 128 noise pixels each, scaled by any factor 

between 1 

% and 5 yields a redraw rate of 360 - 380 Hz. 

%  

% One patch, 128 by 128 noise pixels, scaled by any factor between 1 

% and 5 yields a redraw rate of 670 Hz. 

 

% Abort script if it isn't executed on Psychtoolbox-3: 

AssertOpenGL; 

 

% Assign default values for all unspecified input parameters: 

 

if nargin < 1 || isempty(numRects) 

    numRects = 1; % Draw one noise patch by default. 

end 

 

if nargin < 2 || isempty(rectSize) 

    rectSize = 250; % Default patch size is 128 by 128 noisels. 

end 

 

if nargin < 3 || isempty(scale) 

    scale = 5; % Don't up- or downscale patch by default. 

end 

 

if nargin < 4 || isempty(syncToVBL) 

    syncToVBL = 1; % Synchronize to vertical retrace by default. 

end 

 

if syncToVBL > 0 

    asyncflag = 0; 

else 

    asyncflag = 2; 

end 

 

if nargin < 5 || isempty(dontclear) 

    dontclear = 0; % Clear backbuffer to background color by default 

after each bufferswap. 

end 

 

if dontclear > 0 

    % A value of 2 will prevent any change to the backbuffer after a 

    % bufferswap. In that case it is your responsibility to take 

care of 

    % that, but you'll might save up to 1 millisecond. 

    dontclear = 2; 

end 

    Priority(1); 

    nframes = 1000; 

 

try 
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    % Find screen with maximal index: 

    screenid = max(Screen('Screens')); 

 

    % Open fullscreen onscreen window on that screen. Background 

color is 

    % gray, double buffering is enabled. Return a 'win'dowhandle and 

a 

    % rectangle 'winRect' which defines the size of the window: 

    [win, winRect] = Screen('OpenWindow', screenid, 128); 

         

    % Compute destination rectangle locations for the random noise 

patches: 

     

    % 'objRect' is a rectangle of the size 'rectSize' by 'rectSize' 

pixels of 

    % our Matlab noise image matrix: 

    objRect = SetRect(0,0,rectSize, rectSize); 

    % ArrangeRects creates 'numRects' copies of 'objRect', all 

nicely 

    % arranged / distributed in our window of size 'winRect': 

    dstRect = ArrangeRects(numRects, objRect, winRect); 

 

    % Now we rescale all rects: They are scaled in size by a factor 

'scale': 

    for i=1:numRects 

        % Compute center position [xc,yc] of the i'th rectangle: 

        [xc, yc] = RectCenter(dstRect(i,:)); 

        % Create a new rectange, centered at the same position, but 

'scale' 

        % times the size of our pixel noise matrix 'objRect': 

        dstRect(i,:)=CenterRectOnPoint(objRect * scale, xc, yc); 

    end 

 

    % Init framecounter to zero and take initial timestamp, define 

other timing variables: 

    

    count = 0; 

    tstart = GetSecs; 

    previousGetSecs = tstart; 

    currentGetSecs = tstart; 

    [VBLTimestamp, StimulusOnsetTime, FlipTimestamp] = 

Screen('Flip',  win, 0, dontclear, asyncflag); 

    previousVBL = VBLTimestamp; 

    currentVBL = VBLTimestamp; 

    previousOnset = StimulusOnsetTime; 

    currentOnset = StimulusOnsetTime; 

    previousFlip = FlipTimestamp; 

    currentFlip = FlipTimestamp; 

    x = 1:nframes; 

    y = 1:nframes; 

    z = 1:nframes; 

    n = 1:nframes; 

     

    % Run noise image drawing loop for 100 frames: 
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    while count < nframes 

        % Generate and draw 'numRects' noise images: 

        for i=1:numRects 

            % Compute noiseimg noise image matrix with Matlab: 

            % Normally distributed noise with mean 128 and stddev. 

50,   % each 

            % pixel computed independently: 

            noiseimg=(50*randn(rectSize, rectSize)+ 128); 

 

            % Convert it to a texture 'tex': 

            tex=Screen('MakeTexture', win, noiseimg); 

 

            % Draw the texture into the screen location defined by 

the 

            % destination rectangle 'dstRect(i,:)'. If dstRect is 

bigger 

            % than our noise image 'noiseimg', PTB will 

automatically 

            % up-scale the noise image. We set the 'filterMode' flag 

for 

            % drawing of the noise image to zero: This way the 

bilinear 

            % filter gets disabled and replaced by standard nearest 

            % neighbour filtering. This is important to preserve the 

            % statistical independence of the noise pixels in the 

noise 

            % texture! The default bilinear filtering would 

introduce   % local 

            % correlations when scaling is applied: 

            Screen('DrawTexture', win, tex, [], dstRect(i,:), [], 

0); 

             

          % After drawing, we can discard the noise texture. 

            Screen('Close', tex); 

             

        end 

         

        % Done with drawing the noise patches to the backbuffer: 

Initiate 

        % buffer-swap. If 'asyncflag' is zero, buffer swap will be 

        % synchronized to vertical retrace. If 'asyncflag' is 2, 

 bufferswap 

        % will happen immediately -- Only useful for benchmarking! 

         

        %Systemtiming 

        currentGetSecs = GetSecs; 

        count; 

        tmid = currentGetSecs - previousGetSecs; 

        previousGetSecs = currentGetSecs; 

        x(count+1) = tmid;         

         

        %DefineTimestamps: 

        [VBLTimestamp, StimulusOnsetTime, FlipTimestamp ] = 

 Screen('Flip', win, 0, dontclear, asyncflag); 
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        VBLTimestamp = VBLTimestamp; 

        StimulusOnsetTime = StimulusOnsetTime; 

        FlipTimestamp = FlipTimestamp; 

         

        %VBL Timing: 

        currentVBL = VBLTimestamp; 

        VBLmid = currentVBL - previousVBL; 

        previousVBL = currentVBL; 

        y(count+1) = VBLmid; 

         

        %Onset Timing: 

        currentOnset = StimulusOnsetTime; 

        Onsetmid = currentOnset - previousOnset; 

        previousOnset = currentOnset; 

        n(count+1) = Onsetmid;         

         

        %Flip Timing: 

        currentFlip = FlipTimestamp; 

        Flipmid = currentFlip - previousFlip; 

        previousFlip = currentFlip; 

        z(count+1) = Flipmid; 

        

        % Increase our frame counter: 

        count = count + 1;        

                           

    end  

     

    %Lost frames loop 

 

    format long; 

    outlier = 0; 

    for j = y; 

        if  j > 0.0118;  

            j 

            outlier = outlier + 1; 

        end 

    end 

    outlier 

    outlierfreq = outlier/nframes 

  

    %Display results 

    %x-y  

    %n-y  

    %z-y  

    %x, n, z 

    %y 

     

    % calculate statistics: 

    mux = mean(x); 

    xstd = std(x); 

    muy = mean(y); 

    ystd = std(y); 

    mun = mean(n); 

    nstd = std(n); 
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    muz = mean(z); 

    zstd = std(z); 

    muy 

    %mun 

    %muz 

    %mux 

    %xstd 

    %ystd 

    %nstd 

    %zdts 

    %m=min(x) 

    %M=max(x) 

     

    %Display Histograms: 

     

   %Timestamp Histogram: 

    format long; 

    figure(2) 

    [n1,xout]= hist(x,100); 

    subplot(2,2,1);  bar(xout, n1, 'r') 

    legend('GetSecs') 

    xlabel('Interval(sec)') 

    ylabel('Rate') 

    [n2,xout] = hist(y, 100); 

    subplot(2,2,2); bar(xout, n2, 'k') 

    legend('VBLTimestamp') 

    xlabel('Interval(sec)') 

    ylabel('Rate') 

    [n3, xout] = hist(n, 100);  

    subplot(2,2,3); bar(xout, n3, 'g') 

    legend('StimulusOnsetTime') 

    xlabel('Interval(sec)') 

    ylabel('Rate') 

    [n4,xout] = hist(z, 100); 

    subplot(2,2,4); bar(xout, n4, 'b') 

    legend('FlipTimestamp') 

    xlabel('Interval(sec)') 

    ylabel('Rate') 

     

    %Timestamp difference Histogram: 

    format long; 

    figure(3) 

    [n1,xout] = hist(x-y, 100);  

    subplot(2,2,1); bar(xout, n1,'r') 

    legend('GetSecs - VBL') 

    xlabel('Interval(sec)') 

    ylabel('Rate') 

    [n2, xout] = hist(z-x, 100); 

    subplot(2,2,2) ; bar(xout, n2, 'g') 

    legend('Flip - GetSecs') 

    %[n3, xout] = hist(n-y, 100); 

    %subplot(2,2,3); bar(xout, n3, 'g') 

    %legend('Onset - VBL') 

    xlabel('Interval(sec)') 
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    ylabel('Rate') 

    [n4,xout] = hist(z-y, 100); 

    subplot(2,2,4); bar(xout, n4, 'b') 

    legend('Flip - VBL') 

    xlabel('Interval(sec)') 

    ylabel('Rate') 

     

   

    % We're done: Output average framerate: 

    telapsed = GetSecs - tstart 

    updaterate = count / telapsed 

     

    % Done. Close Screen, release all ressouces: 

    Screen('CloseAll'); 

catch 

    % Our usual error handler: Close screen and then... 

    Screen('CloseAll'); 

    % ... rethrow the error. 

    psychrethrow(psychlasterror); 

end 

 

 


