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Abstract

Stimulus Software Redevelopment For Large Scale &dRasponse Activity

By

Anastassia Tolpygo

A possible replacement method of the visual stimulusrifgo is explored to update
experimental techniques in large-scale recording of retmaput activity In particular,
emphasis is placed on Matlab interpreted language hatliPsychtoolbox platform. The benefits
and limitations of the favored alternative are studied usiigng manipulation and performance
diagnostics supported by graphical data. Timing accuracy ardivése handshaking are
essential aspects of the stimylus turn part of the overall recurrent cycle of the ekpent
This accuracy is needed for a precise white-noise asahysthod of action potentgin live
retinal tissue samples. The retinal ganglion cells perfmuch processing before transmitting
the information to the visual cortex via optic nerve. ISegperimentation has helped classify

retinal neurons helping further investigation of the @mervous system and its wonders.
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| ntr oduction

1.1Biological Background

The brain and spinal cord control and govern most fanstof all living creatures.
Together they are referred to as The Central NervougiBY&CNS), a vast network of
neuronal cells, all communicating with signals in spe@fdterns to execute functional
or reflexive tasks. Between neurons, these patterns ésg@athways, as each signal has
specific starting point and a target. This signal has loedined as an action potential
(AP) and is a self-regenerating wave of electrical gynefl] An AP is initiated in a
neuronal cell body, at the axon hillock, and propagateéketderminus of the axon. [1]
Each AP will travel down an axon of a neuron until it rescits final destination at the
end where the cell membrane forms a synapse witlhanoegll.

The location at which two neurons interact is calledsymaptic cleft and most
commonly is an axon of the pre-synaptic cell convergin@g atendrite of the post-
synaptic cell. Once it reaches the end of the axorikhwill cause the release of various
neurotransmitters which will flow out into the cleft. This pees can either increase or
decrease the electrical potential in the membrane gbdkesynaptic cellidepending on
the transmitter released. Hyper- or de-polarization sehgeion specific channels may
increase or decrease the probability of an AP to spikepampagate through the post-
synaptic cell; it may also cause other internal charijes neurotransmitter process and

cell anatomy is shown in Fig.1l
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Figure 1.1 L arge scale representat

ion of atypical neuron with a close up

of the synaptic cleft, adapted from http://www.ieaecell.org/epilepsy-02.html

If the membrane’s voltage increases enough to reach the threshold, itspille. Other

channels will then open letting positive ions out of tedl to depolarize it until

equilibrium is reached and the potential drops back tongestiate. lon concentrations

controlling the opening and closing of channels clearly affestpermittivity of the cell

membrane, thus this known as ‘voltage-dependent membrane permeability’. The

change in voltage or a spike is shown in Fig. 1.2 below.
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Figure 1.2 A representation of change in membrane voltage
versus time with rising and falling phases and the threshold

voltage emphasized, adapted from
http://en.wikipedia.org/wiki/File:Action _potential_vert.png

As canbe seen in Fig.1.2, not all stimuli cause the cellrods the voltage must exceed

the threshold. The permeation of action potentials stbfise cell or causes other internal
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changes ifit isn’t surpassed. This operation continues through many cirduriswons
responsible for different tasks. The retina is a satiéway circuit of the CNS between
the eye and visual cortexes, and has three types ainguhotoreceptors, Intermediate
cells, and Retinal Ganglion Cells (RGC4)ith interest to classify such cells by
functionality, research of large scale retinal voltag#ivity has given insight into the

overall operation of the CNS and complex brain processing.

1.2History of Research

There have been a number of ways developed to measipetémial of a neuronal
cell. Commonly used in electrophysiology, the voltage plamethod measures ion
currents across a cell while holding the membrane vottagstant. Similarly, the current
clamp method measures membrane voltage with constantiicent held Another more
complex method is the patch clamp method, which deteetgulrent of just one ion
channel by isolating it with a clamp. Though very usefidséhmethods ultimately only
observe the current and voltage changes of one ceglim@ntioned earlier, the CNS
functions via broad circuits of neurons rather thanviddal cells. Hence, it is valuable
to study neuronal activity on a larger scale, considefiing Big Picure’ of one or
another circuit. This may be done using multiple elecsateonce, positioned outside
cells. The placement of the electrodes is importanafeufficient signal to noise ratio;
the closer the electrode is to a ctie larger and more detailed the signal detected from
it. Extracellular multi-electrode array recordingshibecome the ideal way to achieve

simultaneous recordingf many cells A large number of electrodes increases the



efficiency in a reading, sometimes with spacing comparabléhe cells themselves
electrodes spacing as close as sixty microns. This wohgilm/es to be more useful in
studying networks of neurons and has thus far helped comprehgmiggeribe five and
identify one of a couple dozen morphologically distinguisR&Csin the primate retina.
“The action potential generated by the cell produces locé currents in the saline
solution the retina rests on top, which in turn produce d [oantial at the site of the
electrode [2] The hardware design for gathering data with multipleteddes was
inspired by high-energy particle detection; commonalibesveen silicon strip detectors

and electrodes include dense spacing and ability to record Igwittnde signals.

1.3 Hardware

As mentioned above, “the technology employed is based on silicon microstrip
detector techniques and expertise developed for experimdnitghianergy physics [3].
The application specific integrated circuit, or ASICthe common denominator relating
the two fields of research. Specifically in signal acitjois, where for particle detection a
silicon strip detector is mounted onto a PCB, an array ok¥k2rodes is mounted on a
similar board for the Neuroproject, called the Neurobodfdi both cases, the signals
to be gathered are nominally of small magnitude and dense spébésg characteristc
call for immediate amplification and filtering, which isrfiemed directly with the
preliminary electronics rather than with other detachadvware through which smaller
waveforms may get lost in noise. The Neuroboard is the piece of equipment that

handles these functions. In Fig.1.3 the array of nggtiar dimension 32 x 16 electrodes



resides in the middle, surrounded by eight Platchips ayid Bleurochips:‘Each Platchip
has 64 channels of 150-pF capacitors for ac-coupling theadecsignal to the
corresponding Neurochip channel.[3Every Platchip also has a current generator
electroplate the probes with platinduoreduce the impedence between the electrode and
tissue and circuitry to provide a current pulse for neuromugdtion. [3] Subsequently,

the Neurochip has 64 channels that differentially pre andgmogslify as well as filter the
signal, finally driving it out through a 64:1 multiplexer. Trend pass range is nominally

within 80-2000 Hertz
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512-electrode array
Figure 1.3 The Neuroboard at approximately 25.5cm in length, adapted from Litke et al[3].

Surrounding thee main components are resistors that divide voltage to sgpplyolled
current to each Neurochip and capacitors that filter ndisese smaller components are

all surface mounted and were precisely soldered for sixadpdrboards over the course



of a summer. The experimental technique is based on tHe ofddeister et al. and is

schematically represented by Fig.1.4 [4].

1.4 Stimulating the Retina

The retina works as a processing relay between the wigudd and the brain.
Photoreceptive cells convert kinetic energy of the incormpimgions into chemical energy
to activate a train of reactions to the main neuronshe retina, the RGCs. After
significantprocessing, RGCs’ action potentials carry visual information to various targets
in the brain via optic nerve. In order to identify and meatiueefunctional specificity of
the retina on a broad scale, a micro-electrode aFigyl(3) gathers the electrical output

of RGCs induced by a visual stimulus or movie projected onteetive (Fig.1.4)
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Figure 1.4 Experimental setup, adapted from Litke et al [3]
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The stimulus in this case, is presenteca monitor using a computer running modifiable
code specific to the desired stimulus

Furthermore, the retina is a high functioning, complexlyeesive unit which
makes interpretation difficult. Primarily, the direcause, or stimulus that triggees
certain behavior or spike train should be well known faiueate analysis. Hence, the
stimulus presented has to be timely and very precise; wigclomes a non-trivial
software and hardware correlation task. Such an implicaam complicate data analysis
if the presentation time of a frame and its triggered R@€ponse timing do not
correspond. Various tests and diagnostics were performecter to track the precision
of the algorithm by investigating the average time betwessh frame shown. These
were done using a standard white noise stimulus which ésistied in detail in Section
1.5

White noise stimulus is one stimulus technique in expdo the response
properties of spiking visual system neurons [5]. This sama¢vsimple yet distinct
stimulus offers the possibility to mildly stimulate maR@Cs using variation in intensity
and wavelength, thus generating a wide range of spatighot@l and chromatic response
characteristics. “It provides a complete and easily interpretable model of responses even
for neurons that display a common form of response nanltygehat precludes classical

linear systems analysis [5]



1.5 STA Analysisand White Noise Stimulus

As previously discussed, white noise is most commonly impiésdeas stimulus
for studying retinal activity, causing a wide variety of responses. “As it is stochastic,
highly interleaved, can span a wide range of visual inpsitepliust to fluctuations in
response characteristics, and does not affect cell dmept® strong or prolonged
stimuli, this type of visual stimulant is well suited $amultaneous measurement of
multiple neurons and has many advantages to other typesApplied along with a
refined mathematical method called Spike-Triggered AveragéSTA) that estimates
the stimulus-cell response relationship, this method is u®finvestigating circuits of
neurons. For the retina, complex and nonlinear filteahghcoming information is the
motivation behind the STA analysis. Each RGC respondsdopaocesses particular
parts of any given input. This functioning is similar to theogling done by analotp-
digital converters together with band-pass filters tdatsospecific parts of incoming
information. Unlike conductors that simply pass or stofermation, RGCs filter and
manipulatet so as to translate into a language a specific neuraltaauinterpret

A typical white noise frame is shown in Fig.1.5, a drpattion of that frame that
an RGC is sensitive to is called the receptive fielce fidsponse properties of that RGC
are estimated using basic linear algebra for STA anallRgactions are due to certain
parameters of encoding in a retinal cell. Such as locatioinsize of eacbell’s special
receptive field, range of detectable stimulus time frequamnd the preferred variation in
intensity and saturatiorThese are known as spatial, temporal and chromatic respons

properties of the retina respectively [5]. One RGC mase leensitivity in all or just one



of these properties, ignoring everything except very daistinits of information. This
response distinction is achieved using white noise stisnidecause its intent is to project
all the combinations of spectrum, time frequency andsgiossible of any receptive
field. Determined by a normal distribution, these comimmst vary through frames

during prolonged running experiments.

Figure 1.5 An example frame of white noise
stimulus at a large Scale factor.

Consequently, STA analysis or reverse correlation will look at one cell’s electrical
activity and average the frames prefacing action potenitiaorder to calculate the
parameters that cause them. STA stimulus is defindoeamverage stimulus preceding a
spike in the cell, i.eithe sum of the stimuli before each response, divided by total

number of spikes [5]

(1)



The vector sis defined as the stimulus at a given time t and the spike count in the
time immediately following this stimulus [5]. There is dedency in the response f on

the stimulus s, defined as the expected responge R(s

R(s) = < fls > = 2 fP(fs)
f : )

Here, P is the probability of stimulus s firing and prodgca response f. It is also
assumed the history of responses has no effect on fiiiession, which means, that the
spikes are generated by a Poisson process with a meamepar equal to R [5]. As an
example, consider that the total response current in a melapends linearly in the
stimulus, but spike probability has nonlinear dependence oantutue to the physiology
of the ion channels that control spike generation %), known as the static nonlinear
model of response will incorporate such a discrepancy.

The numerator and denominator of equation (1) can be divijethe total
recording time T. Taking T to infinjt the denominator becomes the ‘average firing rate’
and assumes a nonzero limit <f>. The same limit israed for the numerator. Hence,
for large values of T, using equation (1) and (2) and simplifywith the use of the

probability identity P(s & f) = B{)P(f|s), the STA can be rephrased.

a = (1/=<f>)2 sP(s)R(s)
s 3)

“Thus, the STA approaches a sum of stimulus vectors, each weighted pratsability
and the average response it induces, normalized by the avieirageate [5]

As is evident, the STA approximation is heavily dependerd timing accuracy
of the stimulus frames, proportional to the firing ratefrequency of spikes in a response

train. Therefore, the nominally trivial monitor refresate and projected frame rate

10



become of utmost importance in this experiment. Siree stimulus is generated by a

computer program; its accuracy should be accounted foatratgorithm.

2
The Need to Revamp Preexisting Software and

Hardware

As previously mentioned, a good way to interpret the fonelity of a neural
circuit is simultaneously, from many neurons. The “Neuroproject does just that by using
high energy physics instrumentation together with neulodical experimentation and
statistical data analysis to probe the mysteriehefGNS and the retina. Overall, the
process is a flow of information through hardware anitiwsme paths. Initially, visual
stimulus is presented to the retina. The data aquisitonputer initiates the start of the
stimulus program via a TTL pulse to the stimulus computer. The retina will ‘see’ the
movie and react accordingly to the various parameters ofta whise stimulus. It rests
on top of a 512 microelectrode array, where RGC spikesagteired by the electrodes.
As discussed in Section 1.3, the array is mounted ontdN¢hgoboard. After being
filtered and amplified within the circuitry, the signal® finally digitized backn the data
acquisitionPC which processes the incoming information with LabViéke existing

hardware to software synchronization is a TTL pulsé $ent from the stimulus to the
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DAQ computer every 10@rames displayed in order to monitor the accuracy of the
stimulus timing, mentioned in Section 2.1.

In general, the stimulus is generated with an algorithplementing a pseudo-
random number generator that will return a number bet@e&s6. The image created is
an NxM matrix of ‘stixels’ each representing one random number and is visually
described by Fig.1.5. A stixel is a predetermined square &n@aets all taking on the
same random value, short fuwe ‘stimulation pixel’. Each random value represents a
grayscale color, 0 being black and 255, as white. Thoughvamti¢o this thesis, a stixel
can also have an RGB value with three random numbeesafth stimulation pixel, also
on the scale of 68 255, 255 representing the most saturated color value. Axnigtr
calculated for every frame projected on a screen aé sgdate rate which should be in
sync withthe monitor refresh rate. This ‘on the fly’ calculation takes minimal memory
space and has become the preferred generating method teentlé range of possible

stimuli with variable parameters for any experimental tiomaand scaling

2.1 Methods

Currently, the stimulus uses MacOS-9 running on MacG4 with the stimulus
produced using an older computer language Lisp together witld G &hown on a Sony
Trinitron MultiscanE100 monitor. This system was origindhyplemented for many
reasonsthe prominent feature being the ability to turn system inptsr off, which
prohibits the computer from running other functions during auttisnpresentation. The

need for newer and faster hardware is now eminent andtumddely, none of the

12



replacement options have such control as it is aifeaif MacOS-09 only. Within the
existing code, there is also some monitoring of thendtis accuracy checking for
‘missed frames’, defined in Section 2.3, which is communicated back to tlia da
acquisition computer via TTL pulse. Other experimenterthénfield, such as Michael
Stryker at UCSF, have begun using Matlab7.x along withfavae package called
Psychtoolbox-3 or PTB-3. "Matlab is a high-level ipteted language with extensive
support for numerical calculations. The Psychophysics bboxolinterfaces between
Matlab and the computer hardware. The Psychtoolbox'sroot@es provide access to
the display frame buffer and color lookup table, allowcéyonization with the vertical
retrace, support millisecond timing, and facilitate the ctté@cof observer responses
[6]. PTB-3 also offers many demo programs with various exagflstimuli. The most
compatible one offered is the ‘Fast Noise Demo’ (FND), which renders white noise.
Formation of the image is also done with pseudo-random nug#mrator, with each
number representing the grayscale value of a stixeledamoisel in the original code
[Appendix A]. There are two functions most responsible fhis illustration;
Screen(‘Flip”) with built in time monitoring and Screen(‘MakeTexture”). The former flips
the screen display from the current frame to the méite maintaining an update rate
that is in sync with the vertical retrace of the moniThe later converts the NxM matrix
of random numbers into a stixel image. With these fonetitwo adjustable variables
arise; Scale determines the square area of pixels in @ stixl RectSize, the stixel
dimension of the matrix. Though this new system is @rs@ndly and manageable with
upgraded hardware, problems with timing accuracy still take plceexploration of

these issues follows
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3

Problems and Diagnostics of Psychtoolbox

Unlike the older operating system, PCs intended to replacithelus control do
not have system interrupts. Without this crucial feat@resomputer has freedom to
decide whether an execution is vital or not and bypassatdar to run updates, scans,
etc. If per say, stimulus is running and the operating sysesds to execute one of these
internal maintenance functions, the stimulus may [o$arity and a frame will not get
flipped in time and will stay displayed past the moniteirash. This is referred tas
missing of a frame and can also occur when the compugtysdoes not have enough
time to calculate the NxM random value matrix and misise®pportunity to change the
image. Whereas, instead of displaying one frame for 11.7 sedtinds with the
corresponding 85Hz monitor refresh interval, the framerainain on the screen for 23.4
millisecond or longer, this is investigated in detail in S8t8.2. As discussed earlier,
this is an enormous problem for the STA analysis, whidies heavily on the precise
time correlation between stimulus and response. Tdléris of utmost importance to
know exactly which frame precedes a certain responsedroRGC in the form of action
potentials. If for instance, a spike is assumed to lesatrof some frame, timing of that
frame must correlate exactly prior to that spike. Qife, it is impossible to understand
what may or may not cause an RGC to spike. If it is irsipds to produce perfect
stimuli, it is helpful to at least monitor the existerand occurrence of missing frames to

adjust analysis accordingly.
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3.1 Investigating Update Rate

As an initial experiment, the Fast Noise Demo was exeautétiple times with
varied Scale and RectSize in order to observe the amclinaitations of the update rate.
Timing data was acquired using the built-in GetSecs timestairiph keeps track of the
system time at the staand end of the stimulus and ‘count’ which is the number of
frames displayed. This was done for two computers wifereift hardware and software
specifications. Figure 3.1 is that of a an older Windows XP d?ra Dell Precision
Workstation 650 with an Intel® Xed“ 2.66GHz, double CPU processor and display on
Dell M991 Monitor using a Radeon 700 series video CHn& specific setup was studied
with an 800 x 600 resolution setting and a monitor refrednial of 85Hz. As seen in
Fig.3.1, the x-axis is the stixel dimension of the noiselpatw the y-axis is the returned
update rate in Hertz. It is most evident that a plateatheofupdate rate exists, where
neither scale nor rectSize affect the overall tinpegiormance. Unfortunately, with more
complex or larger stimuli, this accuracy breaks down hadipdate rate looses precision.
In fact, it lessens to approximately half of the monitefresh rate, analogous to the
computer missing one display sweep and waiting for the oest This will result in
frames displayed every other monitor refresh. The cabtiigis is rather intuitive as the
computer has more random numbers to calculate with langiee matrices yet in the
same time period. In Fig.3.1, this happens at about 200 by @@ sPeculiarly, at the
smallest scale setting of one, the timing breakdown sarigea larger square stixel

specification. Though the patch dimension is the sartletive equal amount of numbers
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to generate, further investigation could not be conductedtaseftware malfunction.
Figure 3.2 depicts a similar pattern gathered from a Windows XPDeH Precision
Workstation690 with Intel® Xeon® 2.66GHZ, quadruple CPU processmg NVIDIA
Quadro NVX235 video card. The display ran on a Sony TrinitortiséanE100 monitor
with the highest possible refresh interval of 60 Hefhiaugh a less direct comparison. In
this case, he falloff occurs later to agree with the assumption that newer video card

and computer are faster.

WinXPwith Dell M991
Monitor
100
T 50 km:m:u——.\
= AN
o 60 —Scalel
§ 40 ™ \\ﬂ
5 20 ——Scale5
s 0 Scale 10
0 200 400 600  —imScalels

RectSize(Stixels)

Figure 3.1 Updaterate frequency versus patch size, varying in scale with a
monitor refresh rate of 85Hz

WinXP with Sony Trinintron
MultiscanE100 Monitor

__ 80
L 60 M—h\ +—Scalel
)
g 40 u ——Scale3
3 20
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L 0 T T 1

== Scalel0

0 200 400 600
=== Scale20

RectSize(Stixels)

Figure 3.2 Plateau at set monitor refresh rate of 60Hz. Consistent break down
of update rate to half of monitor refresh rate at approximately 400 squar e stixels.
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The data above observes computing limitations the repimetachnique may have. If
the stimulus frames cannot flip in sync with the veftiedrace of the monitor, frames

will be missed.

3.2 Timestamps and Missed Frames

Given the certain range of parameters that guarantaecanate update rate found
in Fig.3.1 and Fig.3.2, it is important to verify timely frandisplay within those
restrictions. Consequently, the discovered falloff agivas studied to see how many
frames exactly were missed as well as the possibilityaitk tthem. Using the returned
update rate and some additional code [Appem]ixmissed frames were counted and
recorded for the@ewer computer at a scale of three, a monitor refreghabil60Hz and a
resolution of 800x600 pixelAccording to previous measurements, scaling of 400 and
above was expected to miss many more frames, so theoduodithe experiment was

reduced. The results are shown in Table 3.1.

Frame count/duration RectSize Number of Missed Frames
100,000/30mins 200 2

100,000/30mins 300 0

100,000/30mins 400 1

18,000/5mins 500 18000

Table 3.1 Missed frames at various dimensions.

The most important outcome heiethe plateau region performing with almost ideal

accuracy resulting in little to no missed frames. Thouwh,soon as the noise patch

17



increased to 500 by 500 every single frame was delayed, giackame count was
18000. That difference between 1@W0 and 250,000 random numbers to be generated
forces the computer to spend more time calculating the Malfix which turns out to be
slower than the monitor refresh rate. This is a comjauialt restriction to be considered
when choosing stimulus parameters since the computebé&ugsd the desired display
change frequency.

Next, the original Fast Noise Demo was modified using praegisimestamps.
Along with Screen(‘Flip’), the algorithm can monitor the timing between frames for
various stimuli specifications using VBLTimestamps. As presip stated, the major
functionality of Screen(‘Flip’) is to switch an existing front display with an anticipated
back display in sync with the vertical retrace of thenitor while tracking system time
when the actual flip has happened as a VBLTimestamp return enjuRlipTimestamp
is another one taken ¢he end of ‘Flip’ execution. As can be seen in the modified code
[Appendix B], these time stamps were implemented for every catithe start of each
displayed frame. The inverse of the update frequency defihesideal duration that a

frame ought to be shown,

I 4)
Hence, as mentioned earlier, at an 85Hz monitor refegsharframe should be displayed
for approximately 11.7 milliseconds. With this definitioina iframe is missed, it can only
be flipped at the next monitor refresh. So, its dispglme becomes a multiple of the

expected time,

AT = CT. (5)

18



In this definition C is some whole number, depending om tielayed the flip is. As with
most software timing, there will be some error to thiscexalculation, where the
timestamp will be taken slightly prior to or after the thspflip, which accounts for the
distribution in Fig.3.3. Using the built in Matlab histogrdumction and defining the
interval between timestamps as the bins, timing within thee@u region was studied.
Figure 3.3 shows a histogram of four built in PTB timestangpsesenting a stable
stimulus with no missing frames but with subtle jittesuard the expected time, defined
by equation (4). Due to its accuracy, VBL timestamp was mostulusef this
experiment. Figure 3.4 shows a histogram of a small numbeissed frames with the

display interval up to double the expected amount.
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Figure 3.3 Histograms from different time stamps; StimulusOnset and VBL are identical.
Note Flip and GetSecs are precise but lack distribution accuracy and were therefore less
useful. The x-axis in all the histograms is in seconds but with only three significant figures
max display option. The y-axis represents the number of frames displayed at the intervals.
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Figure 3.4 At double the expected interval, corresponding to half the monitor refresh rate, a
few counts are seen. For the VBL time stamp there are a small number of counts with the
display duration of 23.4 microseconds, which is more obvious when taking the y-axis into

logarithmic scale.

This diagnostic was also taken at a dimension of 32x16std@responding to the size

and shape of the electrode array, and can be seeguirefd.5.
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Figure 3.5 As expected, within the plateau region of zero to approximately 400 scaling, VBL
timestamps are still accurate and in sync with the monitor refresh rate.
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Though rather conservative, the results above give siosight into the software
performance limitations in a new stimulus system intdrfde the Neuroproject upgrade.
If missed frames are unavoidable, the ability to attlekserve their occurrendgs the

next best thing. With the incidence of a missed framewhn, the analysis can be

modified accordingly.
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Discussion

In the last twenty-some-odd years, retinal output agtimvestigation has been
able to classify a number of retinal ganglion cells using k@meous multi-electrode
recording. The 512 electrode technique first used in 2003/04 andirttes made the
classification of another RGC possible. Numerous stiimmnamethods have been
utilized, concluding Spike Triggered Average as the most enfigigefor studying
action potentials of retinal ganglion cel&anta Cruz Institute of Particle Physics with the
Biology department at University of California, Santa Cngz the site of such
collaboration under the guidance of Alan Litke, Alexar@leer and others. Currently, the
project is undergoing a make-over of hardware and softasmiems. The hardware to
software relay coding and electronics progress was posgtblehe help of Daniele Fusi
and Vitalyi Fedeyev. With the outdated Lysp/C stimulus cpaw®riding many useful
control functions, a robust yet accessible replacgmgstenmis needed. Matlab with the
Psychtoolbox platform poses a good option, but as any démn has accuracy
limitations; specifically in display exactness and timenitoring. FastNoiseDemo of
white noise, used for STA, was mainly implemented in examirtieget problems in
search of possible solutions and general adequacy ofalMatt alternate stimulus
software for the Neuroproject. There is still much workeadbne, such asbrand new
code, rather than a provided demo. Also, the exact ocoaram missed framed should

be obtainable within the algorithm to drive precise analg$isiction potential trains
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recorded from live retinal samplek order for Psychtoolbox to become the primary
stimulus source, issues with timing and synchronization nebd tmldressed. The above
results that | have gathered, have helped understandsties in renewing the stimulus
technique. It became evident that calculation limitatioosur at a certain complexity of
stimulus, which may be fixable with a faster procesatso, with the scaling breakdown
shown in Fig.3.1, video card limitations came to light. Bpsh a faster computer aad
more advanced video card together will supply timely and accuratalss without
missing framesAlthough if that does happen, it should be well addressedaiysas in a
way to compensate or eliminate the error. Overall, witli developed software and
hardware alterations, more refined classificationtbeo RGCs and neurons of the CNS
will be possible. Lastly, the newer Neuroboards, mentioneskection 1.3, | contributed

in surface mounting are currently being used in experiments.

25



5

Works Cited

[1] D. Purves et al eddleurosciencedth Ed. Sunderland: Sinauer Associates, Inc, pp37-
119, 2008.

[2] W. Dabrowski et al;'Development of front-end ASICs for imaging neuronal\atgti
in live tissue, Nuclear Instruments and Methods in Physics Research, A 541 pp. 405
411, 2005.

[3] A. Litke et al, “What Does the Eye Tell the Brain?: Development of a€Bysor the
Large-Scale Recording ®&fetinal Output Activity, IEEE Transactions On Nuclear
Science, vol. 51, no. 4, August 2004.

[4] M. Meister, J. Pine, and D. A. Baylor, “Multi-neuronal signals from
the retina: acquisition and analysis, J. Neurosci. Methods, vol. 51, pp.-996, 1994.

[5] E J Chichilnisky “A simple white noise analysis of neuronal light responses,
Computation in. Neural Systems, 12, pp. 199-213, 2001.

[6] Brainard, D. H. “The Psychophysics ToolboxSpatial Vision 10:433-436, 1997.
Can be found atittp://psychtoolbox.org/wikka.php?wakka=PsychtoolboxOverview

26


http://psychtoolbox.org/wikka.php?wakka=PsychtoolboxOverview

6

Appendix

A Fast Noise Demo Original Code [6]

function FastNoiseDemo (numRects, rectSize, scale, syncToVBL,
dontclear)

% FastNoiseDemo ([numRects=1] [, rectSize=128][, scale=1] [,
syncToVBL=1] [, dontclear=0])

[o)

o\

oo

Demonstrates how to generate and draw noise patches on-the-fly in
fast way. Can be

used to benchmark your system by varying the load. If you like
this demo

then also have a look at FastMaskedNoiseDemo that shows how to
efficiently draw a masked stimulus by use of alpha-blending.

o

o0 o°

oo

% numRects = Number of random patches to generate and draw per
frame.

% rectSize = Size of the generated random noise image: rectSize by
rectSize

% pixels. This is also the size of the Psychtoolbox noise
% texture.

% scale = Scalefactor to apply to texture during drawing: E.g. if
you'd set

% scale = 2, then each noise pixel would be replicated to draw an
image

[o)

% that is twice the width and height of the input noise image. In
this

% demo, a nearest neighbour filter is applied, i.e., pixels are just
% replicated, not bilinearly filtered -- Important to preserve
statistical

independence of the random pixel values!

oe

oe

% syncToVBL = 1=Synchronize bufferswaps to retrace. 0=Swap
immediately when

% drawing is finished. Value zero is useful for benchmarking the
whole

% system, because your measured framerate will not be limited by the
monitor refresh rate -- Gives you a feeling of how much headroom
is left

in your loop.

oe

o oo

oe

dontclear = If set to 1 then the backbuffer is not automatically
cleared
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% to background color after a flip. Can save up to 1 millisecond on
old
graphics hardware.

o o°

o°

Example results on a Intel Pentium-4 3.2 Ghz machine with a NVidia
GeForce 7800 GTX graphics card, running under M$-Windows XP SP3:

oo oo

o°

Two patches, 256 by 256 noise pixels each, scaled by any factor
between 1
and 5 yields a redraw rate of 100 Hz.

oo o°

oo

One patch, 256 by 256 noise pixels, scaled by any factor between 1
and 5 yields a redraw rate of 196 Hz.

oo oo

oo

Two patches, 128 by 128 noise pixels each, scaled by any factor
between 1
and 5 yields a redraw rate of 360 - 380 Hz.

oo o°

o°

One patch, 128 by 128 noise pixels, scaled by any factor between 1
and 5 yields a redraw rate of 670 Hz.

o°

% Abort script if it isn't executed on Psychtoolbox-3:
AssertOpenGL;

[o)

% Assign default values for all unspecified input parameters:

if nargin < 1 || isempty(numRects)
numRects = 1; % Draw one noise patch by default.
end

if nargin < 2 || isempty(rectSize)
rectSize = 128; % Default patch size is 128 by 128 noisels.
end

if nargin < 3 || isempty(scale)
scale = 1; % Don't up- or downscale patch by default.
end

if nargin < 4 || isempty (syncToVBL)
syncToVBL = 1; % Synchronize to vertical retrace by default.
end

if syncToVBL > 0
asyncflag = 0;
else
asyncflag = 2;
end

if nargin < 5 || isempty(dontclear)

dontclear = 0; % Clear backbuffer to background color by default
after each bufferswap.
end

if dontclear > 0
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% A value of 2 will prevent any change to the backbuffer after a
% bufferswap. In that case it 1s your responsibility to take
care of
% that, but you'll might save up to 1 millisecond.
dontclear = 2;
end

try
% Find screen with maximal index:
screenid = max (Screen ('Screens'));

% Open fullscreen onscreen window on that screen. Background
color is

% gray, double buffering is enabled. Return a 'win'dowhandle and
a

% rectangle 'winRect' which defines the size of the window:

[win, winRect] = Screen('OpenWindow', screenid, 128);

% Compute destination rectangle locations for the random noise
patches:

% 'objRect' is a rectangle of the size 'rectSize' by 'rectSize'
pixels of

% our Matlab noise image matrix:
objRect = SetRect (0,0, rectSize, rectSize);

% ArrangeRects creates 'numRects' copies of 'objRect', all
nicely

% arranged / distributed in our window of size 'winRect':
dstRect = ArrangeRects (numRects, objRect, winRect);

% Now we rescale all rects: They are scaled in size by a factor
'scale':
for i=l:numRects
% Compute center position [xc,yc] of the i'th rectangle:
[xc, yc] = RectCenter (dstRect(i,:));
% Create a new rectange, centered at the same position, but
'scale'’
% times the size of our pixel noise matrix 'objRect':
dstRect (i, :)=CenterRectOnPoint (objRect * scale, xc, yc);
end

% Init framecounter to zero and take initial timestamp:
count = 0;
tstart = GetSecs;
% Run noise image drawing loop for 1000 frames:
while count < 1000
% Generate and draw 'numRects' noise images:
for i=l:numRects
Compute noiseimg noise image matrix with Matlab:
% Normally distributed noise with mean 128 and stddev.

o°

50, each

Qo

% pixel computed independently:
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noiseimg=(50*randn (rectSize, rectSize) + 128);

Q

% Convert it to a texture 'tex':
tex=Screen ('MakeTexture', win, noiseimg);

% Draw the texture into the screen location defined by

the

% destination rectangle 'dstRect(i,:)'. If dstRect is
bigger

% than our noise image 'noiseimg', PTB will
automatically

% up-scale the noise image. We set the 'filterMode' flag
for

% drawing of the noise image to zero: This way the
bilinear

% filter gets disabled and replaced by standard nearest

% neighbour filtering. This is important to preserve the

% statistical independence of the noise pixels in the
noise

[o)

% texture! The default bilinear filtering would

introduce local

[o)

% correlations when scaling is applied:

Screen ('DrawTexture', win, tex, [], dstRect(i,:), [],
0) 7
% After drawing, we can discard the noise texture.
Screen('Close', tex):;
end
% Done with drawing the noise patches to the backbuffer:
Initiate
% buffer-swap. If 'asyncflag' is zero, buffer swap will be
% synchronized to vertical retrace. If 'asyncflag' is 2,
bufferswap
% will happen immediately -- Only useful for benchmarking!
Screen('Flip', win, 0, dontclear, asyncflag);
% Increase our frame counter:
count = count + 1;
end
% We're done: Output average framerate:
telapsed = GetSecs - tstart
updaterate = count / telapsed
% Done. Close Screen, release all ressouces:
Screen ('CloseAll');
catch
% Our usual error handler: Close screen and then...
Screen ('CloseAll');
% ... rethrow the error.
psychrethrow (psychlasterror) ;
end
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B Modified Fast Noise Demo Code

function FastNoiseDemo (numRects, rectSize, scale, syncToVBL,
dontclear)

% FastNoiseDemo ([numRects=1][, rectSize=128][, scale=1] /[,
syncToVBL=1] [, dontclear=0])

% Demonstrates how to generate and draw noise patches on-the-fly in
a fast way. Can be

% used to benchmark your system by varying the load. If you like
this demo

then also have a look at FastMaskedNoiseDemo that shows how to
efficiently draw a masked stimulus by use of alpha-blending.
numRects = Number of random patches to generate and draw per

frame.

oo oo

oo

% rectSize = Size of the generated random noise image: rectSize by
rectSize

% pixels. This is also the size of the Psychtoolbox noise
% texture.

% scale = Scalefactor to apply to texture during drawing: E.g. if
you'd set

% scale = 2, then each noise pixel would be replicated to draw an
image

% that is twice the width and height of the input noise image. In

% demo, a nearest neighbour filter is applied, i.e., pixels are just
% replicated, not bilinearly filtered -- Important to preserve
statistical

independence of the random pixel values!

o

o\

% syncToVBL = 1=Synchronize bufferswaps to retrace. 0=Swap
immediately when

% drawing is finished. Value zero is useful for benchmarking the
whole

% system, because your measured framerate will not be limited by the
% monitor refresh rate -- Gives you a feeling of how much headroom
is left

in your loop.

oe

oe

% dontclear = If set to 1 then the backbuffer is not automatically
cleared

% to background color after a flip. Can save up to 1 millisecond on
old

graphics hardware.

o oe

oe

Example results on a Intel Pentium-4 3.2 Ghz machine with a NVidia
GeForce 7800 GTX graphics card, running under M$-Windows XP SP3

o o

oe

Two patches, 256 by 256 noise pixels each, scaled by any factor
between 1

o)

% and 5 yields a redraw rate of 100 Hz.
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o°

o°

One patch, 256 by 256 noise pixels, scaled by any factor between 1
and 5 yields a redraw rate of 196 Hz.

o o°

o°

Two patches, 128 by 128 noise pixels each, scaled by any factor
between 1
and 5 yields a redraw rate of 360 - 380 Hz.

oo o°

o°

One patch, 128 by 128 noise pixels, scaled by any factor between 1
and 5 yields a redraw rate of 670 Hz.

o°

oo

Abort script if it isn't executed on Psychtoolbox-3:
AssertOpenGL;

[o)

% Assign default values for all unspecified input parameters:

if nargin < 1 || isempty (numRects)
numRects = 1; % Draw one noise patch by default.

end
if nargin < 2 || isempty(rectSize)

rectSize = 250; % Default patch size is 128 by 128 noisels.
end

if nargin < 3 || isempty(scale)
scale = 5; % Don't up- or downscale patch by default.
end

if nargin < 4 || isempty(syncToVBL)

syncToVBL = 1; % Synchronize to vertical retrace by default.
end

if syncToVBL > 0
asyncflag = 0;
else
asyncflag = 2;
end

if nargin < 5 || isempty(dontclear)

dontclear = 0; % Clear backbuffer to background color by default
after each bufferswap.
end

if dontclear > 0
% A value of 2 will prevent any change to the backbuffer after a
% bufferswap. In that case it is your responsibility to take
care of
% that, but you'll might save up to 1 millisecond.
dontclear = 2;
end
Priority(1l);

nframes = 1000;

try
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% Find screen with maximal index:
screenid = max (Screen ('Screens'));

% Open fullscreen onscreen window on that screen. Background
color 1is
% gray, double buffering is enabled. Return a 'win'dowhandle and

% rectangle 'winRect' which defines the size of the window:
[win, winRect] = Screen('OpenWindow', screenid, 128);

% Compute destination rectangle locations for the random noise
patches:

% 'objRect' is a rectangle of the size 'rectSize' by 'rectSize'
pixels of
% our Matlab noise image matrix:
objRect = SetRect (0,0, rectSize, rectSize);
% ArrangeRects creates 'numRects' copies of 'objRect', all
nicely
% arranged / distributed in our window of size 'winRect':
dstRect = ArrangeRects (numRects, objRect, winRect);
% Now we rescale all rects: They are scaled in size by a factor
'scale':
for i=l:numRects
% Compute center position [xc,yc] of the i'th rectangle:
[xc, yc] = RectCenter (dstRect (i,:));
% Create a new rectange, centered at the same position, but
% times the size of our pixel noise matrix 'objRect':
dstRect (i, :)=CenterRectOnPoint (objRect * scale, xc, yc);
end

% Init framecounter to zero and take initial timestamp, define
other timing variables:

count = 0;

tstart = GetSecs;

previousGetSecs = tstart;

currentGetSecs = tstart;

[VBLTimestamp, StimulusOnsetTime, FlipTimestamp] =
Screen('Flip', win, 0, dontclear, asyncflagqg);

previousVBL = VBLTimestamp;
currentVBL = VBLTimestamp;

previousOnset = StimulusOnsetTime;
currentOnset = StimulusOnsetTime;
previousFlip = FlipTimestamp;
currentFlip = FlipTimestamp;

x = l:nframes;

y = l:nframes;

z = l:nframes;

n = l:nframes;

oe

Run noise image drawing loop for 100 frames:
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while count < nframes

50, % each
% pixel computed independently:
noiseimg=(50*randn (rectSize, rectSize)+ 128);
% Convert it to a texture 'tex':
tex=Screen ('MakeTexture', win, noiseimg);
% Draw the texture into the screen location defined by
the
% destination rectangle 'dstRect(i,:)'. If dstRect is
bigger
% than our noise image 'noiseimg', PTB will
automatically
% up-scale the noise image. We set the 'filterMode' flag
for
% drawing of the noise image to zero: This way the
bilinear
% filter gets disabled and replaced by standard nearest
% neighbour filtering. This is important to preserve the
% statistical independence of the noise pixels in the
noise
% texture! The default bilinear filtering would
introduce % local
% correlations when scaling is applied:
Screen ('DrawTexture', win, tex, [], dstRect(i,:), [],
0):
% After drawing, we can discard the noise texture.
Screen ('Close', tex);
end
% Done with drawing the noise patches to the backbuffer:
Initiate
% buffer-swap. If 'asyncflag' is zero, buffer swap will be
% synchronized to vertical retrace. If 'asyncflag' is 2,
bufferswap
% will happen immediately -- Only useful for benchmarking!
$Systemtiming
currentGetSecs = GetSecs;
count;
tmid = currentGetSecs - previousGetSecs;
previousGetSecs = currentGetSecs;
X (count+1l) = tmid;

Q

% Generate and draw 'numRects' noise images:

for i=l:numRects

Compute noiseimg noise image matrix with Matlab:

% Normally distributed noise with mean 128 and stddev.

o°

$DefineTimestamps:
[VBLTimestamp, StimulusOnsetTime, FlipTimestamp ] =

Screen('Flip', win, 0, dontclear, asyncflaqg);
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VBLTimestamp = VBLTimestamp;
StimulusOnsetTime = StimulusOnsetTime;
FlipTimestamp = FlipTimestamp;

$VBL Timing:

currentVBL = VBLTimestamp;

VBLmid = currentVBL - previousVBL;
previousVBL = currentVBL;

y (count+1) = VBLmid;

%Onset Timing:

currentOnset = StimulusOnsetTime;
Onsetmid = currentOnset - previousOnset;
previousOnset = currentOnset;

n (count+1l) = Onsetmid;

$Flip Timing:

currentFlip = FlipTimestamp;

Flipmid = currentFlip - previousFlip;
previousFlip = currentFlip;

z (count+1l) = Flipmid;

% Increase our frame counter:

count = count + 1;

end
%Lost frames loop

format long;
outlier = 0;
for J = vy;
if 3 > 0.0118;
]
outlier = outlier + 1;
end
end
outlier
outlierfreq = outlier/nframes

$Display results

S
y
Ty
y

% calculate statistics:
mux = mean (x) ;
xstd = std(x

’

(x)
muy = mean(y) ;
ystd = std(y);
mun = mean(n) ;
nstd = std(n);
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muz = mean(z) ;
zstd = std(z);
muy

mun

Smuz

Smux

$xstd

Systd

%nstd

%zdts

$m=min (x)
SM=max (x)

%$Display Histograms:

$Timestamp Histogram:
format long;

figure (2)
[nl,xout]= hist(x,100);
subplot(2,2,1); bar(xout, nl, 'r'")

legend ('GetSecs')

xlabel ('Interval (sec) ')

ylabel ('Rate')

[n2,xout] = hist(y, 100);
subplot(2,2,2); bar(xout, n2, 'k'")
legend ('VBLTimestamp')

xlabel ('Interval (sec) ')

ylabel ('Rate')

[n3, xout] = hist(n, 100);
subplot(2,2,3); bar(xout, n3, 'g'")
legend ('StimulusOnsetTime"')

xlabel ('Interval (sec) ')

ylabel ('Rate')

[nd4,xout] = hist(z, 100);
subplot(2,2,4); bar(xout, n4, 'b'")
legend ('FlipTimestamp"')

xlabel ("Interval (sec) ")

ylabel ('Rate')

$Timestamp difference Histogram:
format long;

figure (3)

[nl,xout] = hist(x-y, 100);
subplot(2,2,1); bar(xout, nl,'r")
legend ('GetSecs - VBL')

xlabel ("Interval (sec) ")

ylabel ('Rate')

[n2, xout] = hist(z-x, 100);
subplot(2,2,2) ; bar(xout, n2, 'g')
legend ('Flip - GetSecs')

%[n3, xout] = hist(n-y, 100);

%$subplot(2,2,3); bar(xout, n3, 'g')
%legend('Onset - VBL'")
xlabel ('Interval (sec) ")
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ylabel ('Rate')

[nd,xout] = hist(z-y, 100);
subplot(2,2,4); bar(xout, n4, 'b')
legend ('Flip - VBL')

xlabel ('Interval (sec) ")

ylabel ('Rate')

[o)

% We're done: Output average framerate:

telapsed = GetSecs - tstart

updaterate = count / telapsed

% Done. Close Screen, release all ressouces:
Screen ('CloseAll');

catch

[o)

Screen ('CloseAll');
% ... rethrow the error.
psychrethrow (psychlasterror) ;

end
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% Our usual error handler: Close screen and then...



