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Abstract

Optimal Control of a Taekwondo Kick

by

Aaron Palmer

The tools of physics apply to a larger class of problems then the analysis of physical systems.

Mathematical formalisms developed for classical mechanics are used to study a problem of

optimal control theory. In the problem of an optimal roundhouse kick in Taekwondo,

the Pontryagin Maximum Principle relates the optimal control problem to the framework

of Hamiltonian mechanics. The theory of Lie groups provides a structured manifold to

analyze the non-linear mechanics of the system of two joints that is represented by connected

rotations. The simplified system of a front kick in a single plane is initially analyzed. This

planar problem is represented by the manifold of a torus, which is the maximal torus

of the manifold for the full problem. The manifold for the Taekwondo roundhouse kick

is represented by the non-abelian Lie group SO(3) × SO(2). A ‘diagonalization’ of this

problem projects it onto the torus and relates back to the planar problem.

A full analytic solution is not possible due to the difficulties of the non-linear sys-

tem. Instead, methods of approximation, by reduction of the problem to finite dimensional

optimization and numerical calculation of optimal trajectories, are used.
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1

Introduction

Methods for the solution of problems of optimal control have been well developed

to efficiently solve for systems that are approximated well by linear dynamics. In this

thesis, I present a problem of optimal control of a mechanical system that is highly non-

linear. The problem deals with a physical system that is intuitive from my training in

Taekwondo and contains many of the elements of a general mechanical control problem. The

theory of non-linear control is understood from a mathematical perspective and is directly

related to a generalization of classical mechanics in physics. The ability to effectively solve

such a problem of optimal control in order to be used in robotics is of importance to the

development of more capable technology. Non-linear optimal control is not widely used in

the current state of robotics. Instead more basic controllers are used, and if optimality is

wanted either the problem is solved for a linearized system, or a trial and error engineering

approach is taken to approximately minimize the cost. There are several difficulties that

currently prevent a mainstream use of non-linear optimal control by engineers. Here, I

study the approach from the mathematical perspective, and use the analogy in physics to
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develop a method to solve the problem of a roundhouse kick in Taekwondo.

The problem of an optimal roundhouse kick, has many aspects of geometric control

theory. Naturally, it is a non-linear mechanical system with constraints. The constraints

could be added to a larger vector space in the form of Lagrange multipliers. This computa-

tion has a number of disadvantages and a geometric approach leads to interesting analysis

and computational methods influenced by the geometry and conservation laws. These ben-

efits include a more intuitive expression for the governing equations and conservations. The

Cayley transform allows efficiently approximated integration with the ability to stay exactly

on the constraint manifold.

Control theory has a long history of use in a variety of fields of engineering. I focus

on the Hamiltonian approach to optimal control developed by Lev Pontryagin [7]. Not only

is this approach effective in understanding and solving problems in optimal control, but

the mechanisms parallel almost exactly similar mechanisms used in physics and suggest

a broader mathematical understanding of the concept of momentum. By expressing the

kick as a representation otrajectory in a Lie group, we get to make use of the physical

geometry and symmetries as well as the well established theory of Lie groups. Of particular

importance to the approach is the triviality of the tangent bundle for Lie groups. We shall

see that while the Hamiltonian approach to optimal control adds more variables and an

even further removed dual to the tangent of the co-tangent space, there is no additional

complexity added in the way we must compute the equations.

The full problem has two features that add difficulty. One is the fundamental non-

linearity of the important dynamics of the problem. The second is the non-commutativity of

the rotation group. Not only does this make the algebra difficult, but it gives the equations
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more difficult terms. In the thesis, I attempt to derive these equations in a straight forward

manner so that a computer could handle all the algebraic manipulations and derivatives. I

also consider if it is beneficial to analyze the non-linearity on the maximal torus of the full

manifold, and then use approximation methods to get back to the full manifold. In Chapter

2.1, I develop the first order differential equations of a planar front kick, which is on the

maximal torus of the full manifold. In Chapter 2.2, I present an optimal control problem

for the full-mechanical system that uses the dynamics from Chapter 2.1. In Chapter 3, I

finish with computational results for the planar problem.

1.1 Background

1.1.1 Hamilton’s Mechanics and Lie Groups

Hamiltonian mechanics plays a very significant role in physics. Far more than

just a convenient way to derive equations of motion, analysis of the Hamiltonian is very

useful in understanding many of the properties of the system. Even in the upper division

class on mechanics, PHYS 105, the discussion of Hamiltonian mechanics did not move far

from discussing the case of an unconstrained space on R
n, or simple constraints such as

a few circles or free body rotation. Certainly the ability to express parameterizations of

manifolds with scalars is general, but this direct approach to solving problems can lead to

tedious calculations for unsolvable equations and dead ends in analysis. The problems of

Hamiltonian mechanics that occur on manifolds with symmetry have a direct relation with

very deep mathematics through the representation of these manifolds with Lie groups.

A Lie group is a mathematical group, with a multiplicative binary operation, iden-

tity, and inverses for all elements, that is also a smooth, differentiable manifold. The theory
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of Lie groups combines the powerful mathematical fields of group theory and topology, in a

way that leads to many useful results [6, 8]. Not only are Lie groups of mathematical inter-

est, but they are at the forefront of our understanding of physics as they describe continuous

symmetries. In this thesis I examine a problem where Lie groups arise from rotations of

rigid bodies, a global representation of the system. However, one of the most important

uses of Lie groups is in understanding the fundamental forces on the very minute scale. Not

only do the Lie groups come up in particle physics, and classical mechanics, but they are

prevalently used in quantum mechanics. In classical mechanics, Lie groups are represented

as an action on a vector space, whereas in quantum mechanics, the action is on a Hilbert

space. The Lie algebra describes the infinitesimal changes in the group representation,

and in the classical theory can be represented by a tensor algebra. In quantum mechanics

the infinitesimal changes of the function space representation require the Lie algebra to be

expressed as differential operators.

The reason Lie groups are important in the problem I am looking at is because

they govern the principles of calculus over non-commutative variables. This is equivalent to

saying they govern the calculus over non-linear manifolds with symmetry if we emphasize the

manifold structure. For any Lie group we can consider the tangent space to the manifold

at any point. Because it is a manifold, if it is of finite dimension, n, the tangent space

looks locally like R
n anywhere on the manifold. However there is more to it. In fact the

vector space picks up a generally non-commutative product along with the abelian vector

addition, which becomes extremely useful in the analysis of changes on the manifold. The

mathematical theory of Hamiltonian systems generalizes naturally for a manifold of a Lie

group. The only difference is a single extra term to take into account the non-commutativity
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of the group. The equations (1.1) give a vector field on the manifold, the equations for the

vector field of the Taekwondo kick are developed in Chapter 2. The vectors generate one-

parameter subgroups through the exponential mapping from the Lie algebra to the Lie

group. Infinitesimally these are the integral of the vector field and give the trajectory on

the manifold. We must relate the Lie algebra elements to a vectors space by a trivialization

that relates the tangent space at a point on the manifold to the tangent space at the identity

element of the group. There exists more than one way to do this trivialization. For a group

isomorphic to a finite dimensional matrix group, the choice corresponds to whether the

tangent space at a point is related to the tangent space at the identity by left or right

multiplication. The physical representation of the system depends on this choice and the

trivialization used admits a subtle difference in the mathematics. There is a natural pairing

of algebra elements and dual elements, which for our purpose is equivalent to an inner

product on the vectors space of tangent and co-tangent vectors.

Throughout this thesis I use lower case English letters for variables in the tangent

space, and corresponding Greek letters for the co-tangent space. The terminology of tangent

space and Lie algebra is used interchangeably when there is an association of tangent vectors

with Lie algebra elements. Given a manifold M , group element g, tangent vector m, and co-

tangent vector µ, the Hamiltonian becomes a scalar function of g, µ. Hamilton’s equations

give the vector fields on the tangent and co-tangent bundles of the Lie group manifold,

χg

H
(g, µ) =

δH

δµ
(g, µ)

χµ

H
(g, µ) = −

δH

δg
(g, µ) + ad∗δH

δg
(g,µ)

µ. (1.1)

The evolution of a trajectory from these vector fields depends on the trivialization. For a
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right trivialization the evolution takes the form

ġ(g, µ) = gχg

H
(g, µ), µ̇(g, µ) = χµ

H
(g, µ)

The partial derivatives in Eq. (1.1) can be defined in a standard manner as the limit of a

change in a given direction. For changes on the manifold we take that direction as an vector

of the tangent space, relating back to the group through the trivialization and exponential

mapping. The partial derivatives are computed via the natural pairing of algebra elements

and their dual, or an inner product on the vector space. In the second equation we assume

a right trivialization, which will be what is used in this thesis,

<
δH

δµ
(g, µ), γ > = lim

�→0

dH(g, µ+ �γ)

d�

< m,
δH

δg
(g, µ) > = lim

�→0

dH(ge�m, µ)

d�
. (1.2)

The adjoint is a linearization of the conjugate action, and the co-adjoint appearing in the

equation is from the pairing with a co-tangent vector,

adnm =
de�mne−�m

d�
∈ TM

< m, ad∗nγ >=< adnm, γ > . (1.3)

Clearly if the group is abelian this term disappears. While notationally complex, after

we choose a trivialization of the Lie group the computation is straightforward, and basic

identities lead to a simple expression for this term.

1.1.2 Poisson Brackets

Poisson brackets are a very interesting way to analyze the behavior of functionals

in a system. They give an alternative method to derive equations of motion, and they are



7

very important in understanding the transition between classical and quantum mechanics.

Abstractly, the Poisson bracket gives an algebraic structure to functionals of T ∗M , with

the product the Poisson bracket. The Poisson bracket takes a form on the manifold of Lie

groups in a manner where the connection with the Hamiltonian approach is obvious. The

bracket is defined for two functionals on the system at a point in the co-tangent space

{f,H} =<
δf

δg
,
δH

δµ
> − <

δH

δg
,
δf

δµ
> ± < µ,

�
δf

δµ
,
δH

δµ

�
> . (1.4)

What appears here as the commutator bracket is generally the Lie algebra multiplication

operator. The ambiguity in sign of the last term is resolved by choosing a trivialization for

the co-tangent bundle. This is equivalent to the co-adjoint operator that came up in the

Hamiltonian equations. The physical significance comes when the H is the Hamiltonian for

a system, then the Poisson bracket gives the time evolution for a functional f , ḟ = {f,H}.

If this quantity is zero for every Hamiltonian, then the function is known as a Casimir.

For any function whose bracket with a specific Hamiltonian is zero, represents a conserved

quantity for the Hamiltonian system. From the asymmetry of the bracket, {H,H} is zero

and the Hamiltonian is always conserved.

Notice that all the pairings in the inner products are natural pairings of tangent

vectors and co-tangent vectors in the dual space. The dual space is defined mathematically

as a space of linear functionals mapping a vector space to R. This has major significance in

physics as it represents the difference of velocity and momentum. In fact, if unsure about

whether a vector is dual or not, it can be resolved by dimensional analysis of the units. If

there is a term of mass, or charge for electromagnetism, the quantity can be considered to

lie in some sort of dual space.
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1.1.3 Control Theory

Control theory comes in many flavors, but I focus on control of a deterministic,

first order system, which is to be done in an optimal way. In many ways a Hamiltonian

mechanical system can be thought of as a control problem without any controls and with

explicit dependence of the cost function on the dual variables. If the quantity to minimize is

the Lagrangian action, the equations of control theory are identical to Hamilton’s equations.

Control theory generalizes this principle by considering that our system depends in some

way on quantities which we have control over. Now we are faced with the problem of how

to choose these controls in an optimal manner. This problem has a wide range of uses.

There is the obvious problem in industry of what inputs into a system will produce the best

output. Control can also be used abstractly in problems like modeling nature. The basic

principle that evolution is an optimizing system can be used to gain an understanding of

ecosystems or even biological functions.

In optimal control theory the problem is generally stated as a dynamical system,

where the first derivatives of the state variables are known up to some dependence on the

control variables. The problem can be stated for very general constraint spaces, but then

more information is necessary to make use of many of the tools. For the main problems

considered here we assume exact conditions on the initial and end points of the trajectory

are known, but not the end time. These assumptions are natural for the roundhouse kick

in Taekwondo because the initial state of the leg is vertical and the ending state of the leg

is the target, but the speed and timing of the kick is unknown. Other approaches are also

valid, and in Section 2.2.1 I discuss the tradeoffs in complexity the problem when we adjust

the assumptions of the problem. A generic one-dimensional problem with a single control



9

has the following form:

ẋ(t) = f(x(t), u(t)), x(0) = x0, x(t1) = x1,

u∗ = min
u∈U

��
t1(u)

0
C(x, u)dt

�
. (1.5)

The minimization is understood to be under the dynamic constraints of the system as well

as the boundary conditions. This is obviously a difficult problem, as we have the constraint

given by a differential equation, or generally a system of ODE’s, and we are not even given

the time that the system will terminate, but instead the position. For the purposes of this

study I only consider when the domain of controls is open and dense. If the domain is

not open more care must be taken to consider the possibility of a control on the boundary.

If there is no or little cost on the controls, Pontryagin discovered that it is common for

a problem with a closed set of controls to exhibit a bang-bang solution. This term refers

to how the control jumps from one boundary to another without spending any time in

between. While simple solutions, the switching time can still be difficult to calculate for

these problems [5]. The Pontryagin Maximum Principal [7] gives us an approach to this

general problem by constructing a Hamiltonian and analyzing the problem through the

evolution of the adjoint system.

H(x, p, u) = p0C(x, u) + f(x, u)p,

ẋ =
∂H

∂p
, ṗ = −

∂H

∂x
, p0 < 0,

u(t)∗ = max
u(t)

{H(x(t), p(t), u(t)}. (1.6)

We have introduced additional variables here, so we have some degree of freedom of choice.

First of all, p0 is a constant that we can choose to be less than zero. This allows the

expression of the control as a maximization of the Hamiltonian, the variable, p0, is by
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convention set to −1. Some people refuse to use this convention and refer to this as the

minimization principle by having p0 > 0. The dual variable p also has a scale factor we can

decide on. Under assumptions of continuity of the equations and a certain niceness of the

control space (while complicated to make rigorous we certainly stay in this range in this

discussion), the Hamiltonian is conserved under the evolution of the equation. Because of

this we use the freedom in the scale of p to set H(t) = 0 for all t. The advantage to these

equations is that now we can determine u at a specific time due to the maximization of the

Hamiltonian. In the problems we analyze, the simple dependence on u allows for a simple

expression for this maximization. The remaining difficulty is in determining the beginning

and end conditions for p. In fact, this is only determined by solving for the dynamical

systems dependance on an optimal control with the boundary conditions given for the

state system. While these equations can all be expressed, the analytic solution is generally

not possible to get even for simple examples. There are numerous approaches taken to

approximate this. One is to expand the expression for u(t) to a finite-degree polynomial

for which the state system can then be integrated analytically in terms of p(t). Then this

analytic expression of x(t) is solved for the boundary conditions giving an approximation

for the boundary conditions on the adjoint system. This approach would be difficult in the

problems we analyze, and may not capture the non-linearities that are important. From

this point a better approximation is still wanted, particularly approximations that converge

to the true optimal solution. A basic way to do this is to consider that we have in effect

reduced the optimal control problem to the optimization problem on the space on terminal

or initial conditions of the dual variable p. This optimization problem is particularly difficult

as the constraints are the constraints of the state in Eq. (1.5) and of the evolution from Eq.
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(1.6). If we can efficiently compute the optimal trajectories, there are approaches to this

optimization problem. This is an advantage, as we have reduced the mathematically infinite

dimensional optimization problem, over the function space on g : [0, t1] → U to a finite

optimization problem on the end space of the dual variable. There is one more difficulty,

in that these are necessary but not sufficient conditions for optimality. For example on this

end condition space, there may be more than one point that satisfy all the conditions. We

have to compute the actual cost of these trajectories in order to find the optimal one. In the

problem analyzed in this thesis, intuition suggests where we can look for the actual optimal

solution.

These equations clearly resemble Hamilton’s equations from physics, but let us look

into this in more depth. Consider the problem in classical mechanics of the minimization

of the action, L = KE(x, ẋ)−PE(x). Although there is no control, we can still put it into

Eq. (1.6)

H = p0L(x, ẋ) + ẋp.

This looks similar except for the dependance on ẋ in the cost. In physics this is resolved by

the interpretation of the dual as the momentum, a physically relevant quantity. This dual

can be solved by p = ∂L

∂ẋ
, and then the cost becomes a function of the momentum p. Set

p0 = −1 and solve for ẋ in terms of p

H = −KE(x, ẋ(p)) + PE(x) + ẋp.

The final step is to realize that we have effectively linearized the kinetic energy dependance

on the velocity, so the kinetic energy is actually just 1
2 < ẋ, p > and the Hamiltonian
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becomes what we are used to

H = KE(ẋ, p) + PE(x) =
1

2
ẋp+ PE(x).

Hamilton’s equations are also identical. There is some hand-waving in this description; in

the thesis I am writing for math, I attempt to explore more of the relationship of physics

between the state and adjoint systems and the relation with control theory. The co-state

variables for a control problem form a sort of momentum with regard to the cost. This

momentum hold information so that optimal trajectories won’t just go in the direction of

instantaneous least cost, but in a direction that also minimizes future cost. For the purpose

of this thesis the focus is on how to use theses concepts to approach a problem. In this

regard it is important that the generalization of Eq. (1.6) to manifolds in particular Lie

groups, is equivalent to the generalization in Hamiltonian mechanics so there is no need for

a description as the equations are the same [1].

1.1.4 Geometric Algebra

A primary aim of the approach taken in this thesis is to express the relationship

of the geometry of the mechanics and the algebra utilized to solve the problem. One

tool to do this is the formulation of a geometric algebra. Geometric algebra, developed

by William K. Clifford, is also known as a Clifford algebra. More recent work has been

done by David Hestenes and others to develop the generalized calculus on the algebra [4].

The geometric algebra is intrinsically related to the exterior algebra of a vector space. It

encompasses the algebra of differential forms and also works with a general metric. The

basic idea is to combine all the elements of geometry in an n-dimensional space, including

the planes, volumes and scalars, into a single algebra with a new geometrically relevant
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product. The basic building blocks are the symmetric and anti-symmetric products of

vectors. The elements of the algebra are separated into different grades, which are raised

or lowered by the products. The geometric product, represented by simple multiplication,

is an associative and non-commutative product among all the elements of the algebra. The

geometric product distributes over addition, making it analogous to matrix multiplication.

Matrices are typically used when working with tensors in physics. The advantages of working

with a geometric algebra is that it only holds the relevant information and makes more

obvious the properties of the relevant algebra, and the relations with mathematical ring

theory. The greatest benefit of using a geometric algebra in physics is found when doing

relativistic physics. The metric signature is incorporated into the algebra, the Lorentz

transformations appear just as the standard rotations of the geometric algebra. The Clifford

algebra provides a very useful setting for the spin representation of Lie groups, but this is

beyond the scope of this discussion.

The geometric relationship exists for non-relativistic mechanics. For the purposes

of this thesis we are only concerned with the Cl3,0 Clifford algebra of three dimensional

space. Construction of this algebra begins with an ortho-normal basis for a Banach vector

space, where there is a well defined norm. a1, a2, a3, ai ·aj = δij , is the standard inner prod-

uct in R
3. The outer product, ∧, results in a second grade bi-vector and is anti-commutative.

The geometric product among vectors can be expressed as the combination of the inner and

outer products, ab = a∧ b+a · b. The product has a grade-0 scalar, and a grade-2 bi-vector.

Geometrically the scalar is the magnitude of the projection, |a||b|cos(θa,b), and the bi-vector

contains the information of the orientated plane containing the two vectors, as well as the

magnitude of the parallelogram in the plane. The product of higher grade elements has
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geometric significance through the projection onto certain grades of the resulting element.

The parity of the sum of the grades of two multiplied vectors is preserved by the product.

The lowest resultant possible grade is the absolute value of the difference of the grades, and

represents an orthogonal projection of the lesser grade onto the higher grade. The highest

grade is a sum of the two grades, and gives a volume spanned by the orthogonal components

of the two elements multiplied. Some basic facts of the algebra that follow from the above

definitions are that the highest grade is the same as the dimension, n of the starting vector

space, and that there is only one element known as the pseudo-scalar of grade-n, which may

or may not commute with other elements. The number of elements in a grade k is given by

the combinatoric 


n

k



 =
n!

(n− k)!k!
.

The total number of elements in the algebra is 2n. All elements of a single grade square to

a scalar, although not necessarily a positive one. We consider the conjugate of an element

to be the reversal in order of the vectors composed to get the element. For example, for

a bi-vector M = ab,M = ba = −M . The switch in sign is immediately obvious because

two vectors that multiply to form a pure bi-vector must be orthogonal. The conjugate is

no more than a switch of sign for single grade elements, and distributes over addition for

multi-vectors.

An interesting difference from standard vector formulation is how linear transfor-

mations can be described by elements in the algebra. Up to now there was no discussion of

the geometric significance of mixed grade elements, multi-vectors, but these are important

for the role that they play in describing linear transformations of the algebra. A general

linear transformation requires multiplication on both the right and the left by multi-vectors.
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Any linear transformation on vectors given in matrix form can be easily converted to the

algebra by using the inner product to project onto a basis. More interesting is the case

when the linear transformation can be expressed without a basis in a manner that reflects

a geometric transformation.

The main focus of this thesis deals with using the geometric algebra to describe

rotations. Rotations are special linear transformations that form a Lie group. One construc-

tion of the rotations relies on identifying the Lie algebra as a sub-algebra of the geometric

algebra. For any geometric algebra, the bi-vectors generate rotations. For Cl3,0, the bi-

vectors along with the scalar form a sub-algebra isomorphic to the quaternions. Every

element squares to −1 and the basis elements permute as quaternions. All of this can be

discovered through forming a basis of bi-vectors with an ortho-normal vector basis. The

quaternions have a subgroup of unit quaternions that describes the rotational Lie group

SU(2) by their adjoint action on pure quaternions. Let q ∈ H ∼= (Cl3,0)2,0, meaning the

grade 2 and grade 0 elements of the three dimensional Clifford algebra. The the set {q : q

is a sub group. If q is expressed as its scalar and bi-vector parts, we can deconstruct the

rotation,

q = s+B ⇒ q = cos(
θ

2
)− sin(

θ

2
)B̂ = e−

θ

2 B̂.

The exponential map can be defined by the standard series expansion, and this result is

clear from the association of B̂ with the imaginary unit. The factor of −1
2 is necessary in

the description of this as a rotation through the adjoint action. The bi-vectors are now

the generators of the Lie group and describe the change of a rotation through the formula,

Ṙ = −
1
2RΩ. Whether the Ω appears on the left or on the right is a choice we make that

determines the trivialization of the Lie group. Put simply, appearing on the left the Ω
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describes a change in the rotation of the frame, where as on the right it is the change of

the rotation of the body. We could use either one. If we were to use the rotation of the

frame, then the leg would always stay in the same plane leaving out any term requiring the

rotation of the inertial tensor. I choose the right trivialization as a more useful choice. This

choice preserves the symmetry that would be broken if the axis of gravitation was rotating.

Rotation in the plane of B̂ through an angle θ is given by,

R
θ,B̂

(v) = qvq = e−
θ

2 B̂ve
θ

2 B̂. (1.7)

This rotation makes sense for vectors, bi-vectors, and can be extended for linear transfor-

mations. Rotation of every term of a linear transformation is equivalent to rotating the

frame with which the transformation is defined. This is not the same as the product of the

rotational group, which is a composition of rotations and is simply obtained by the product

of rotors. The composition of a rotation and a linear transformation is also different from

rotation of the transformation as it just rotates the output or the input not the frame.

The adjoint operation for the rotation is a linearization of the rotation,

de−
�

2BAe
�

2B

d�
|�=0 =

1

2
(−BA+AB) = [A,B]. (1.8)

This is the product for the Lie algebra and returns another bi-vector.

Note that the wedge product of the algebra is equivalent to the cross product for

vectors if we replace the bi-vector by an axial vector. Using the cross product we can also

formulate the rotations, but using the geometric algebra does it in a way that generalizes to

higher dimension and works for higher grades. The commutator product is also equivalent

to the cross product between axial vectors.

The geometric algebra puts many concepts of physics in an interesting context [3].
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In classical mechanics the angular velocity, angular momentum are all naturally bi-vectors

as they are dealing with infinitesimal rotations, or generators for our rotational Lie group.

The torque, as a time derivative of the angular momentum, is also naturally described by

the geometry of the bi-vectors. The equations are equivalent to what they are in standard

notation, with the cross product replaced by the wedge product. This distinction helps to

keep straight that position or velocity vectors are conceptually different from axial rotation

vectors with entirely different units. The inertia tensor, is now a linear transformation taking

an angular velocity to the angular momentum. The definition in terms of the geometric

algebra is fairly simple, take a bi-vector B and a density ρ [3],

I(B) =

�
ρ(x)x ∧ (xB)1.

The projection of xB onto the vectors is done using a half of the commutator bracket,

(xB)1 = [x,B] = 1
2(xB − Bx). Some authors use this projection as a generalization of the

inner product. I don’t like this because it lacks symmetry; I only consider the inner product

to be defined on objects of the same grade as the scalar part of the geometric product.

This orthogonal projection nicely captures the necessary geometry as it returns a vector

of the velocity at the point due to a rotation generated by B. For our problem we only

consider an inertia tensor with principal axis along the basis axes, which can be defined

by the projection of the angular velocity on the bi-vector basis. The inner product of the

algebra for bi-vectors returns a scalar that is negative for the inner product of a bi-vector

with itself,

A ·B =
1

2
(AB +BA). (1.9)

In Section 2.3, an inner product denoted by a bracket is used. The bracket inner product

refers to the above equation except with the conjugate of one of the vectors, introducing a
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negative sign.

We are often concerned with the transpose of a linear operator. In the geometric

algebra, linear operators transpose via a reversal of order. The linear transform can be de-

composed in terms with only single grade elements on either side. All of these are invertible,

but the following holds for when m,n are multi-vectors by considering the decomposition

into graded vectors,

< mXn, Y > =
1

2
(mXnY + Y mXn) =

1

2
((mXnY )0m

−1m+ nn−1(Y mXn)0)

=
1

2
(XnYm+ nY mX) =< X,nY m > . (1.10)

Another property that is useful is how we can cycle commutations and inner prod-

ucts among bi-vectors similar to the cycling of the cross product and vectors. Let A,B,C

be bi-vectors,

< A, [B,C] >=
1

2
< A,BC − CB >=

1

2
< AB −BA,C >=< [A,B], C > . (1.11)

The geometric algebra can also be used to express a differential operator [4]. The

operator can be defined as partial derivatives with respect to vectors, but the great thing is

that it operates as an element of the algebra. We use �1 for the general vector derivative. If

we let f be a scalar function over vectors, then �1f takes on the interpretation as the vector

valued gradient. In some ways it is more natural to interpret this output as being in the dual

space, but this space has the same algebraic properties as our original space. If F is a vector

valued function over vectors the derivative is more interesting, �1F = (�1F )0 + (�1F )2.

The scalar part is equivalent to the divergence of F in three dimensions, whereas the bi-

vector component represents the curl. It is natural that the curl takes on a bi-vector value

as the intuition is that it represents some infinitesimal rotation of the vector field.
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The bi-vector derivative can also be defined as partials with respect to the bi-

vectors of a function over bi-vectors. This is something that comes up in the problem I

am focusing on. When we take the derivatives with respect to the co-tangent vectors, this

is sort of a dual bi-vector gradient that takes values in the tangent bi-vector space. If we

remember that the derivative is with respect to the co-tangent bi-vectors, we can express

the Poisson bracket in terms of this operator. The derivative with respect to a rotation,

naturally takes a value in the dual to the tangent bi-vector space. For just the SO(3) part

of the problem, let L be the angular momentum, which is a co-tangent bi-vector. Then Eq.

(1.4) can be expressed with the dual bi-vector derivative operator, �2,

{f, g}(R,L) =< �2g,
δf

δR
> − < �2f,

δg

δR
> + < �2g,�2f ], L > .
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2

The Problem

This problem considered here is the optimization of the trajectory of a double

jointed limb. We have two rigid bodies with known lengths, masses, and moment of inertia

tensors. The first joint, the hip, is fixed to a point in space, the second joint, the knee, is

connected to the end of the first. The end of the second rigid body is the foot, which we

want to strike the target. We first consider the simpler problem of the motion in a plane.

The martial arts inspiration is a front snap kick, or ‘ap chagi’ in Korean, a forward kick

where the leg is whipped or snapped to make efficient use of energy. In Taekwondo, this

kick is used as an instructional kick for beginners, who may not have the hip flexibility for

the full kick, to start to grasp the fundamental motion. For the full problem the first joint,

the hip, is free to rotate in three dimensions and the second joint, the knee, is restricted

to rotations in a plane. This is inspired by the roundhouse kick, ‘dollyo chagi’ in Korean

(although this spelling does not capture the pronunciation well.) This kick is similar to the

front kick, but comes around to strike parallel to the ground.

The controls for the problem are torques around the joints. The goal is to find
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a time-optimal trajectory with respect to quadratic costs on the control torques. The

beginning condition is with the limb straight down. The end condition has the leg horizontal,

with the upper limb stopped and only the lower limb moving; in the first problem this is

upwards, while in the final problem the rotation of the second joint is around the vertical

axis. This is clearly a simplification of the motion of the kicks in Taekwondo, where such

a movement would result in an overextended knee. However, in the real motion there is

a transfer of energy and momentum from the leg to the target, which we do not model.

The costs for the kick are up for interpretation. A simple cost is simply the square of

the magnitude of the torques, along with a constant term that encourages speed. Another

approach would be to emphasis power by maximizing the terminal energy through a term

maximizing the instantaneous work done on the second limb. A final approach, which is

slightly different, is to incorporate the end condition into the cost. This allows the end

condition not to be determined exactly allowing the end adjoint condition to be known. It

would also allow for the accuracy to be related in a trade off with the other costs of optimal

time and minimal exertion. In Taekwondo the major considerations are accuracy, speed,

efficiency, and power, often in that order. While other arts put more focus on other things,

the understanding in Taekwondo is that if the strike is precise enough, not much power is

needed to disable an opponent. Besides most of the power comes from speed, and a slow or

inaccurate strike becomes a major vulnerability.

2.1 The Manifold

For the initial planar problem, the configuration manifold is the two dimensional

torus, M = S1 × S1, representing the rotations of the two joints. Along with the tangent
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space TM ∼= M × R
2, representing the angular velocity. The state of controls is the

tangent space to T ∗M , which represents the change in angular momentum or torque and is

isomorphic to R
2. With this respect the configuration is a faithful, surjective representation

of the SO(2)×SO(2) Lie group. In the final problem of the roundhouse kick, the manifold

is S1 × (S3/ ± 1). It is also a faithful, surjective representation of SO(3) × SO(2). It is

important to note that the maximal tori is identical to the manifold of the initial problem.

The physical representation is of two connected rigid bodies in R
3. The limbs are

constrained to be described by only their rotations, the tangent space to these rotations is

isomorphic to the space of pure vector quaternions, vectors with the cross product operation,

or the bi-vectors of the three dimensional geometric algebra. For the quaternions or bi-

vectors, half of the commutator is the proper operation for the Lie algebra. A choice must

be made whether to use a reference frame fixed in space or fixed with the orientation of

the leg. This makes a difference in how we trivialize the tangent space. If we chose the

frame of the leg we would not have to worry about the rotation of the tangent vectors with

respect to the inertia tensor. Then the only term in the change of the momentum is from

gravity and the rotation of the knee, but gravity would no longer be in a fixed direction.

The real disadvantage to this choice however is the complication of the conserved quantities.

Without external torque, the momentum is conserved around the vertical axis, if this axis

is rotating then the conserved part of the momentum is more difficult calculate. In terms

of how we intend to calculate and analyze the problem, I expect this additional complexity

in the momentum conservation to pose a more substantial problem than the extra terms to

the change of momentum.

There is a kinetic energy function, TM → R, that provides a metric on the space,
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as well as a defined potential energy functoin to comprise the Lagrangian. From the metric

we can calculate the dual vectors, and then from the Lagrangian we can derive equations

for the non-linear geodesic curves on the manifold. For the control problem we require first

order equations so we refer to Hamilton’s equations of motion Eq. (1.1). In the control

problem it is also standard to define a metric on the control space as a contributor for the

cost function, which is chosen to be quadratic in the controls. The problem can be considered

to find the Hamiltonian vector fields on the full space of TT ∗M , once we fully develop the

relations of the controls with the configuration. The paths generated by these vector fields

are the optimal trajectories, it is then be a matter of finding the optimal trajectory with

the boundary conditions we require. An additional difficulty is added because we do not

know the initial or end conditions for the adjoint system on the dual space T ∗T ∗M and

have to find ones for which the cost is minimal.

Let Rα, Rβ denote the rotations of the ‘hip’ and ‘knee’ joint respectively. In the

planar model, both of these rotations lie in SO(2), in the full model the first is an element

of SO(3). Dealing now with only the mechanical system, we get a Hamiltonian structure,

with a co-tangent space from the dual to the tangent via the kinetic energy metric. The

co-tangent momentum vectors are denoted as η, ν; the corresponding tangent vectors, e, n.

Please note that these elements are not raised to any powers, so if there is an e raised

to a power this is the exponential map from the Lie algebra to the Lie group. From the

Hamiltonian structure, there is a conserved Hamiltonian H : T ∗M → R, and a Poisson

bracket given by the manifold for the problem without the external torques. We have a

choice to make for the exact representation of the group. I choose the second rotor to be

inside the rotated frame from the first rotation. The position of a point on the second
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limb is Rα(r1 + Rβ(xr2)), not Rα(r1) + Rβ(xr2), for x ∈ [0, 1]. From here on out, r1, r2

are the vectors with magnitude of the full lengths of the respective limbs. The reason for

choosing this manner of rotation is that Rβ only has one degree of freedom, it is restricted

to rotations in a plane.

We are working with Hamiltonian vector fields on the co-tangent bundle, which

give the first derivatives of the co-tangent vectors at a point on the manifold,

χη

H
= −

δH

δRα

+ ad∗δH
δRα

η, χν

H = −
δH

δRβ

.

We wish to add the controls to these vectors such that at a point P ∈ M :

η̇(P ) = χη

H
(P ) + γ − µ ν̇(P ) = χν

H(P ) + µ.

Now we also need to have the dreaded co-co-vectors of T ∗T ∗M , which is denoted by a

p and subscript of their corresponding co-tangent elements. A cost per time given by

c1 = 1 + a

2 |γ|
2 + b

2 |µ|
2. The Hamiltonian for the optimal control problem is

H = −c+ <





e

n

χη

H
+ γ − µ

χν

H
+ µ





,





pα

pβ

pη

pν





> .

The equations generated by this Hamiltonian are definitely complicated. The

best way to handle it is to break it down in smaller problems, which can be solved or

approximated separately. To begin consider the problem of the Hamiltonian system on the

plane.
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2.2 Equations of the planar problem

For the derivation of the equations for this problem we can use the representation

of the problem in the complex plane. The generators for the rotational group, U(1) are

pure imaginary numbers, we also use imaginary numbers for the vertical axis. There is no

need for the geometric algebra, it would be an equivalent representation, but everything

commutes so we stick with the complex numbers. We use I1, I2 to denote the moment

of inertias of the two limbs, m1,m2 to denote the mass of the limbs, and cm1, cm2 for

the vectors pointing to the center of mass of the limbs. The Hamiltonian for the planar

mechanics problem with no external forces is the total energy,

H =
1

2
I1|e|

2+
1

2
I2|e+n|2+

1

2
m2| ˙cm2|

2(Rβ , e, n)+g < m1cm1(Rα)+m2cm2(Rα, Rβ), ê3 > .

(2.1)

By choosing the second rotation to be rotated with the first, the total angular velocity of the

second limb is the addition of the two tangent vectors. While this may make these equations

slightly less appealing, it simplifies the larger problem as the tangent vector to the rotation

of the second limb still stays in one dimension with the constraints. The moment of inertias

are different as the first vector is a rotation around the end of the limb and for the second

we consider rotation around the center of mass. For simplicity we assume symmetry of the

limbs such that cm1 = Rα(
r1
2 ) and the r vectors are of the initial orientation of the limb.

The inertias can calculated standardly as the inertia of thin rods,

I1 =
m1

3
|r1|

2, I2 =
m2

3
|
r2
2
|
2.

We have an inner product on the tangent space that gives the kinetic energy part of the

Hamiltonian. The inner product is described by a symmetric, positive definite, metric
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tensor, G. From here on we consider the tangent and co-tangent vectors to be imaginary

numbers. This is the Lie algebra for rotations on a plane and we use a complex inner

product, which since the vectors are pure imaginary contributes a negative sign.

KE =
1

2
<




e

n



 ,




e

n



 >G= −
1

2

�
e n

�
G




e

n



 =
1

2
<




e

n



 ,




η

ν



 > .

The final pairing between the velocity and momentum corresponds to a complex

inner product with the trivialization of the elements in a complex vector space. For the

representation of the complex numbers to the space, we relate a vertical component of the

vector with the imaginary part, and the horizontal with the real part. The potential energy

term simply isolates the imaginary part of a rotated vector for the height. Rotations are

the imaginary exponents, and the tangent vectors are pure imaginary numbers.

With this representation the initial condition is with both vectors in the direction

of −i. We also use l2 to be the length from the ‘knee’ joint to the center of mass of the

second limb and l1 the length from the ‘hip’ joint to the end of the first limb. The terms for

the center of mass of the second limb and their derivatives can be expressed either through

the rotation transformations, imaginary exponentials, or trigonometric functions. These

are all equivalent; what is important is that it is expressed in terms of the rotations and

their tangent vectors. The computation of G and V , the potential energy, is put off in the

Appendix A.1.

The simple Poisson bracket for the abelian group is

{f, g} =
�





δf

δRα

δf

δRβ



 ,





δg

δη

δg

δν




�
−
�





δg

δRα

δg

δRβ



 ,





δf

δη

δf

δν




�
.
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The partial derivatives are also trivial and could be expressed in terms of the angles,

< v,
δH

δRα

>= v
δH

δRα

=
d

dt
H(eiα+tv))|t=0 = veiα

∂H

∂eiα
= veiα(−i)eiα

∂H

∂α

⇒
δH

δRα

= i
∂H

∂α
.

In this case it is just a change in notation, but represents a more general operation.

The full Hamiltonian for the planar problem can now be expressed as,

H =
1

2
<




η

ν



 ,




η

ν



 >G−1(Rβ) +V (Rα, Rβ), (2.2)

where the metric matrix G is computed in the Appendix, A.1.

G =




I1 + I2 + (l21 + l22)m2 + l1l2m2(Rβ +Rβ) I2 + l22m2 + l1l2m2

1
2(Rβ +Rβ)

I2 + l22m2 + l1l2m2
1
2(Rβ +Rβ) I2 + l22m2



 .

For computational purposes we wish to express the derivative with respect to Rβ of the

kinetic matrix as well as the derivative of its inverse in terms of the inverse and the derivative

matrix. We need to understand some basic derivatives

< v,
δ(Rβ +Rβ)

δRb

>= lim
�→0

d

d�
(eiβ+v� + e−iβ−v�) = −v(Rβ −Rβ).

This derivative takes real numbers to imaginary and imaginary to reals, cos → −i sin, sin →

i cos. The derivative operator is also linear and passes term by term to G. For the inverse,

which appears in the Hamiltonian, there is a formula for the derivative of a matrix inverse,

δG−1

δRb

= −G−1 δG

δRb

G−1.

Now the full equations of motion are R−1
α Rα = e, R−1

β
Rβ = n and




e

n



 = G−1




η

ν



,
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η̇ = χη

H
(Rα, Rβ)

= −
δH

δRα

= −
g

2
((Rα −Rα)(

l1
2
m1 +m2l1) + (RαRβ −RαRβ)m2l2))

η̇ = −ig(sin(α)(
l1
2
m1 +m2l1) + sin(α+ β)m2l2)), (2.3)

ν̇ = χη

H
(Rα, Rβ , η, ν)

= −
1

2

�
η ν

�
G−1 δG

δRβ

G−1




η

ν



−
g

2
(RαRβ −RαRβ)m2l2)

ν̇ = −
1

2

�
η ν

�
G−1 δG

δRβ

G−1




η

ν



− ig sin(α+ β)m2l2. (2.4)

2.2.1 Control

Adding the external torques our equations for motions become,

ν̇ = χν

H + µ, η̇ = χη

H
+ γ − µ.

In this way the change in total angular momentum is due to the torque on the first joint.

Again, the cost per time we use is simply c1 = 1− 1
2(aγ

2 + bµ2). Here the torques are once

again imaginary as they are in the tangent space of the imaginary angular momentum. Our

adjoint variables are, pα, pβ , pη, pν . The new control Hamiltonian is a real valued function

on T ∗T ∗M × (iR)2, where the imaginary real lines are for the control space.

H = −(1−
1

2
(aγ2 − bµ2)) +

�




pα

pβ



 , G−1




η

ν




�
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+
�




pη

pν



 ,




χη

H
(Rα, Rβ , η, ν) + γ − µ

χν

H
(Rα, Rβ , η, ν) + µ




�
.

The inner products are complex, between purely imaginary variables. The complex nature

comes in once more as their is a negative sign in front of all the partial derivatives with

respect to any of these variables. While slightly confusing, this is necessary to continue with

our treatment of the rotations and understanding the sign changes help in generalization

to dual vectors for a more complex algebra. For an optimal trajectory we can use the extra

freedoms to set this to be zero,

H(Rα, Rβ , η, ν, pα, pβ , pη, pν , γ
∗, ν∗) = 0.

For the exactly precise kick, we specify all but n at the terminal condition. This leaves an

interesting relationship for η, ν and a transversality condition for pη, pν ,




η(t1)

ν(t1)



 = G|t1




0

n(t1)



 ,
�




pη(t1)

pν(t1)



 ,




η(t1)

ν(t1)




�
= 0

⇒




pη(t1)

pν(t1)



 = G−T




x

0



 . (2.5)

To determine conditions of maximality for the instantaneous Hamiltonian, consider the

partials with respect to the control torques:

∂H

∂γ
= aγ − pη = 0,

∂H

∂µ
= bµ− pν + pη = 0.

The only critical point must be a maximum because of the quadratic nature, so we obtain

the optimal forces directly from the co-state variables. Manipulating the end condition
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yields

H|t1 = −1− n(t1)pβ(t1)− (χη

H
(t1) +

γ(t1)

2
−

µ(t1)

2
)pη(t1)− (χν

H(t1) +
µ(t1)

2
)pν(t1) = 0.

It comes down to that we need to determine 3 unknowns, one decides pη(t1), pν(t1), and two

more for pα(t1), n(t1). pβ(t1) is determined using zero for the Hamiltonian. We can make

estimates, then we must calculate the trajectory and try to improve the estimate until we

come up with an optimal trajectory that fits our initial as well as terminal trajectory. The

difficulty comes from the need to work both backwards as well as forwards. If we knew

the right initial adjoint boundary conditions, we could immediately compute the optimal

trajectory, but all we have is very limited knowledge of the end condition. Here we rely on

intuition in that we only need to consider the trajectories that lie on the important part of

the manifold between the initial and end conditions.

The equations governing the evolution of the adjoint control variables are now

expressed using the control Hamiltonian, with the more complex terms derived in A.2:

ṗα = −
δ(χη

H
pη + χν

H
pν)

δRα

= g <




pη

pν



 ,




cos(α)( l12 m1 +m2l1) + cos(α+ β)m2l2)

cos(α+ β)m2l2)



 >,

(2.6)

ṗβ = −
δH

δRβ

= g <




pη

pν



 ,




cos(α+ β)m2l2)

cos(α+ β)m2l2)



 >

+
1

2
<




η

ν



 , (−2G−1 δG

δRβ

G−1 δG

δRβ

G−1 +G−1 δ
2G

δR2
β

G−1)




η

ν



 > pν

− <




pα

pβ



 , G−1 δG

δRβ

G−1




η

ν



 >, (2.7)
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ṗη = −
∂(epα + npβ + χν

H
pν)

∂η
= − < G−T




pα

pβ



 ,




1

0



 >

− <




pν

0



 , G−1 δG

δRβ

G−1




η

ν



 >, (2.8)

ṗν = −
∂(epα + npβ + χν

H
pν)

∂ν
= − < G−T




pα

pβ



 ,




0

1



 >

− <




0

pν



 , G−1 δG

δRβ

G−1




η

ν



 > . (2.9)

The first partial derivatives are straight forward to compute, as there is only linear

dependance in the terms of the previous Hamiltonian vector fields. The second is much more

complex, as there is dependance of Rβ in the inverse metric tensor, necessary to express

the tangent vectors. There is also only linear dependance for the momentum vector. As

always, the adjoint system is linear with respect to the co-state variables. Note that the

inner product appearing in these equations is just a vector inner product as a convenience

of notation, the output in all of them is actually an purely imaginary number.

For an algorithm converging to an optimal trajectory, we need a distance function

for when non-optimal trajectories terminate. They terminate if Im(e) < 0, or if 0 < β < π,

or if π/2 < α < 0, or if n crosses zero twice. The distance function can be made of the

form, cos(α(t0))2 + sin(β(t0))2 + |e(t0)|2 + |n(t0)|2.

One more important piece of mechanics comes in again. We need to calculate the

work done by the external torques to compare with the change in the Hamiltonian. This is

quite simple because the energy added is just
�
−eγdt if we only consider one force on the
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first rotation. To show this, suppose ∆H is the change in total energy in the presence of

external torques,

∆H = −
1

2

�
η +∆γ −∆µ ν +∆µ

�
G−1




η +∆γ −∆µ

ν +∆µ



 .

Collect the first order terms, and utilize the symmetry of G,

∆H = −

�
∆γ −∆µ ∆µ

�
G−1




η

ν



 =<




∆γ −∆µ

∆µ



 ,




e

n



 > .

Although it is not addressed in this problem we are solving, there is also a desire to

solve the problem with an emphasis on the power delivered by the kick. To do this we would

add a negative terminal cost, capturing the kinetic energy of the kick, C2 = −w 1
2 |ν(t1)|

2.

We would not want to use n just because to put it in terms of the co-tangent variables

involves the inverse metric and both η, ν. To incorporate this factor we must differentiate

and add it to the instantaneous cost with the term

c2 = wν(χν

H − γ + µ).

This would not add much difficulty, but is not essential for understanding the problem.

An alternative approach to the controls is to not specify the end condition as

a constraint, but to work it into the cost function. The terminal cost has the terms,

1
2d(cos(α)

2 + sin(β)2 + |e|2), evaluated at the end time, t1. In terms of the rotations,

d1
8((Rα +Rα)2 + |Rβ −Rβ |

2 + |e|2). The time derivative adds to the instantaneous cost

c� = d
1

4
(e(Rα −Rα)(Rα +Rα)− n(Rβ +Rβ)(Rβ −Rβ) +

d|e|2

dt
).

The last term is a little more complicated as it must be formulated in terms of the momentum

variables and involves the inverse metric. Now, however, we can set the terminal condition
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for all of the co-state variables to be zero. There is only one undetermined degree of

freedom, which is the terminal condition for n. We should only have to find the value

n(t1), for which the optimal trajectory with respect to the augmented cost passes through

the initial condition. With this approach we can make d as large as we like to get a more

accurate kick. We would need d to be relatively large because we are no longer guaranteed

there is a solution hitting the initial condition as we have allowed the exact end state to

vary. Making d too big could generate numerical problems in the approximation of the

backwards evolution, but as noted these are trade-offs in complexities of the problem.

2.3 Full Roundhouse Kick Problem

For the most part, the notation should carry through from the previous problem,

but now the variables we are dealing with are slightly different creatures. The tangent

space to the rotations is now going to be the bi-vector algebra from the geometric algebra

of 3D space. The rotors also form a subgroup found in the algebra, as discussed in the

introduction, Section 1.1.4. The action of these rotations is no longer simple multiplication,

but by the adjoint action or conjugation. The inertia tensors are now linear transformations

on the algebra of bi-vectors. When the notation calls for a rotated inertia tensor, what is

meant is that the frame of the tensor is rotated. When deriving the energy in terms of

vectors, the vectors are simply incorporated as the vector elements of the geometric algebra.

Due to the nature of the boundary conditions we must choose a basis. The vector basis is

denoted by, {ê1, ê2, ê3}. The third vector is vertical, the direction of the second vector is the

end condition for the kick, which ends with a counter clockwise rotation of the second limb

if looking from above. The basis for the bi-vectors is {b̂3 = ê1ê2 = Iê3, b̂1 = ê2ê3, b̂2 = ê3ê1}.
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We always consider the second rotation to be in the plane of b̂2. The backwards ordering, is

to reconnect these vectors with the plane of rotation and can also be reached by multiplying

the basis vector with the pseudo-scalar, I. For the initial conditions, both rotations are at

the identity. The reason that the initial plane of rotation for the second limb is perpendicular

to the plane joining the initial and end conditions of the leg is an attempt to mimic the

standard ‘backward leaning stance’ of Taekwondo from which this kick is generally thrown.

In this stance the back, kicking leg, is actually point more then 90o from the target. The

final condition for the second rotation is back to the identity. The terminal condition first

rotation can be constructed by considering the two rotations necessary to reach the end

condition and multiplying the rotors on the left in the order that they are carried out,

Rα(t1) = e
−π

2 b̂2e
π

4 b̂1 = −
1
√
2
(b̂3 + b̂2).

The total energy can be expressed in terms of the rotational energy and the kinetic energy

of the center of mass of the second limb,

H =
1

2
< e,Rα(I1)(e) > +

1

2
< (e+ n), Rα(Rβ(I2))(e+ n) > +

1

2
m2| ˙cm2|

2(Rα, Rβ , e, n)

+g < m1cm1(Rα) +m2cm2(Rα, Rβ), ê3 > . (2.10)

For simplicity, we take the eigenvectors of the inertia tensor to be the x, y, z axis, and,

moreover, to be symmetric for rotations around the x, y axis like a cylinder. The only

difference between the first and second inertia tensors a factor of 4 for the rotations of the

full length of the limb because the first limb is rotating around an end and the second is

rotating around its center of mass,

I(b̂3) = Isb̂3, I(b̂2) = Ilb̂2, I(b̂1) = Il(b̂1).
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We would like to express this linear transformation with elements of the algebra

I(B) =< B, b̂3 > Isb̂3+ < B, b̂2 > Ilb̂2+ < B, b̂1 > Ilb̂1.

The inner products here are pairings with dual bi-vectors so using the inner product defined

in Eq. (1.9) on the Clifford algebra these are actually, B · b̂3. As these are always pure

bi-vectors, the conjugate here is simply the negative. The geometric algebra inner product

of two bi-vectors pointing in the same directionally is negative, so this bracket inner product

returns positive scalar output for bi-vectors of the same orientation. A rotation of this inertia

tensor then corresponds to a rotation of the bi-vector basis and is naturally equivalent to a

rotation of the end result with an inversely rotated input,

R(I)(B) = R(I(R−1(B))).

We seek to represent the kinetic energy as a metric, such that we can express the

Hamiltonian with the inner product of the metric,

H =
1

2

�




e

n



 ,




η

ν




�
+ V (Rα, Rβ),

where η, ν are generalized angular momentum bi-vectors in the co-tangent space, reached

by a linear transformation G of e, n. G is the momentum map of the tangent bi-vectors,

as well as the symmetric, positive definite kinetic energy tensor, if we wish to deal with

the bi-vectors as four-vectors in the orthonormal basis for the problem. The equations are

complicated and can be derived from the higher expression with the expression of the center

of mass expressed. In the following notation consider the R, rotations in the group, as the

actions on the space R3. The vectors, r1, r2, represent the two limbs, with the center of

mass at half of the distance. The vectors initialize pointing down, in the −ê3 direction. The
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vector to the center of mass of the second limb is

cm2 = Rα(r1 +Rβ(
r2
2
)).

The boldface r vectors are constants of the system, so the derivative involves a product

rule only on the rotations. To do this we shall make use of a trivialization of the Lie

group. The representation is the adjoint or conjugate action on the geometric algebra,

Rα(v) → wαvw−1
α , where wα is a unitary element that is a scalar plus a bi-vector. This

group is isomorphic to SU(2), also the unit quaternions, which is a double cover of the

rotations we want, SO(3). The double cover does not pose any problem, we just recognize

that Rα,−Rα are equivalent rotations. The trivialization we are using for our variables

yields

ẇα = −
1

2
wαe, ẇβ = −

1

2
wβn.

While these choices appear strange, this trivialization has a nice geometric significance and

leads to some simplifications in calculation. The choice generates a family of one-parameter

subgroups, Rα(t) = R0α(e
−1
2 et) → w0αe

−1
2 et(·)e

1
2 etw−1

0α . The derivative of the inverse is

˙w−1
α =

1

2
ew−1

α .

The algebra element for the β rotation is in a single plane, so only needs a single dimension

of bi-vector, b̂2, isomorphic to the complex numbers. The derivation for the matrix for the

kinetic energy metric is in Eq. (A.3). The equations look the most neat when they are in

matrix form,

H = −
1

2

�
η ν

�
G−1

Rα,Rβ
(




η

ν



) + V (Rα, Rβ).
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In this equation η is a three dimensional bi-vector, while ν is a bi-vector of a single

dimension. The matrix multiplication can be considered as an inner product that is to be

taken with the matrix positive definite matrix G−1 along with a flip in sign as one of the

bi-vectors is the conjugate for the minus sign. The matrix G is symmetric and is composed

of three components. Ge represents the linear transformation in the 3D bi-vector space,

and Gn is the transformation in the 1D space. Gne is a transformation from the 1D space

to the 3D space, appearing as a column in the matrix

G =




Ge Gne

G�
ne Gn



 .

For computational purposes we map this transformation onto a matrix of real vectors.

This is necessary to calculate numerically the inverse, although there may be more efficient

manner to find the inverse using the additional algebraic structure. This is a little bit more

difficult because we have a matrix of transformations in the language of geometric algebra.

While the components in the above equation can be expressed naturally as geometric algebra

transformations, the inverse would be much more difficult. In coordinate free form the

transformations come from the equations worked out before. The transformations that

make of G are

Ge(e) = Rα(I1)(e) +Rα(Rβ(I2))(e) +m2(r1 ∧ [e, r1] +Rβ(r2) ∧ [e,Rβ(r2)] + 2(r1 ∧ [e,Rβ(r2)]),

Gn(n) = Rα(Rβ(I2))(n) +m2r2 ∧ [n, r2],

Gne(n) =
1

2
(Rα(Rβ(I2))(n) +m2(r1 ∧Rβ([n, r2]) +Rβ(r2) ∧Rβ([n, r2])). (2.11)

To really get to the equations of motion, we need to take a variety of derivatives.

When we are working with the representation as an adjoint action the partial derivatives,
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δ

δRβ

and δ

δwβ

, have equivalent meaning. δ

δwβ

becomes an element in the co-tangent space of

the planar rotation through the natural pairing,

< a,
δf(wβ)

δwβ

>=
d

dt
f(wβe

−
1
2at)|t=0.

For example for an arbitrary term in the kinetic energy,

< a,
δ

δwβ

(< e, r1 ∧ wβ [n, r2]w
−1
β

>) >=
d

dt
(< e, r1 ∧ wβe

−1
2 at[n, r2]e

1
2atw−1

β
>)

=< e, r1 ∧ wβ(
−1

2
a[n, r2] + [n, r2]

1

2
a)w−1

β
>=< e, r1 ∧ wβ([[n, r2], a])w

−1
β

> .

We can transpose the transformation to get < [n, r2] ∧ w−1
β

[r1, e]wβ , a >, such that

δ

δwβ

(< e, r1 ∧ wβ [n, r2]w
−1
β

>) = [r2, n] ∧ w−1
β

[r1, e]wβ .

We also need the potential energy,

V = < wα(m1
r1
2

+m2(r1 + wβr2w
−1
β

))w−1
α , e3 >,

δV

δwα

= −(m1
r1
2

+m2(r1 + wβr2w
−1
β

)) ∧ w−1
α e3wα ∈ T ∗M,

δV

δwβ

= −m2r2 ∧ w−1
β

e3wβ ∈ T ∗M. (2.12)

As the second rotation, Rβ , is restricted to a plane, the derivative is restricted to a single

dimension in the cotangent space. The derivatives on the linear transformation G have a

slightly more complex flavor. For conciseness in notation, let π represent the vector with η

and ν. We need to know

δ < π,G−1π >

δwα

∈ T ∗M.

We could calculate it term by term, but there may be a way that it passes into the linear

transformation. Some sample calculations are done in A.3. We can write out the term for
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Rα, which is relatively simple,

δH

δwα

=
1

2

δ

δwα

�




η

ν



 , G−1




η

ν




�
+

δV

δwβ

= −

�
1 1

�
[R−1

α (G−T




η

ν



), Rβ(I)(G
−1




η

ν



)]−m2r2 ∧ w−1
β

e3wβ ,

where I is a more generalized moment of inertia,




I1(e) + I2(e+ n)

I2(n)



 . Of course in all the

equations if there is a term with GT this is nothing but G as it is symmetric, the transpose

is only included to give an extra hint about where the term is originating. The term for Rβ

is much more complex as it appears in almost every term and in different ways. Since all the

operations are linear, there is nothing that we cannot handle with this strategy. However,

it is much more convenient to only consider this term as the abstract transformation. Since

we know the transformation is linear and has a matrix transformation in terms of the basis,

we can us all the machinery of linear transformations. The formula

δG−1

δRβ

= −G−1(
δG

δRβ

(G−1))

still holds. The transformations in terms of the geometric algebra terms are complicated as

we would use the product rule to differentiate separately the terms of multiplication on the

left and on the right, just as the transformations in terms of a basis are complicated.

The adjoint operator also appears in Hamilton’s equations. Using the representa-

tion of the group with an adjoint action on the Clifford algebra, and right trivialization, the

adjoint appears simply as operations in the algebra. The linearization of the adjoint leads
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to a convenient expression

adnm =
de−

mt

2 ne
mt

2

dt
=

1

2
(−mn+ nm) = [n,m],

< m, ad∗γη >=< [γ,m], η >=< m, [η, γ] >,

ad∗γη = [η, γ]. (2.13)

As promised there is no further complication from this term. We write out the final equa-

tions of motion from Eq. (1.1),

−2




wαẇα

wβẇβ



 =





δH

δη

δH

δν



 = G−1




η

ν



 =




e

n



 ,

η̇ = −
δH

δwα

+ [η,
δH

δwα

],

ν̇ = −
δH

δwβ

. (2.14)

2.3.1 Final Controls

The equations for an optimal trajectory for this full problem are nearly identical

to the equations in Section 2.2.1. Some of the terms are more complicated, and for pα,

the co-adjoint term must also be added, but this comes simply from the commutator. The

complicated terms from the Rβ derivative are now more complicated, and they no longer

dissapear for Rα. There is no added difficulty in solving for the optimal controls as the

same partial derivative can be taken to get conditions for criticality, which is equivalent to

maximality again in this case. It is hopefully apparent to the reader that the derivation

of the equations for an optimal trajectory of the control problem is a straight forward

although complex process. Nothing in the derivation of the equations could not be carried

out by computers although I do not believe current computer algebra programs are very
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advanced with manipulating equations of non-abelian algebras. I suggest that using the

Clifford algebras is a good way to approach this problem as all the computations are done

in the same framework.

However, this approach to optimal control is significantly more difficult for the full

problem due to the extra dimensions. To find the correct terminal conditions for the adjoint

system in the planar problem was difficult and it only required a search in a 3 dimensional

space. Now that space would be 7 dimensions and there is less intuition to guide the search.

Approximation of the larger problem using the planar model may be useful. Com-

ing up with an approximate answer will at least help, as it gives a starting point from where

we can find an optimal solution. In Lie group theory the maximal torus of the manifold

plays a large role, so we might presume the model restricted to this torus is also useful here.

There is a very important result in Lie group theory, which can guide us for a simpler way

to approximate the solution to the big problem. For any compact Lie group, every element

in the group is conjugate to an element on a maximal torus of the group. We can use this

because the planar model is the maximal torus for our 3D problem. Restricted to the single

plane of motion we would have the same planar problem that we analyzed. Intuitively, the

solution to the problem, if the end condition was also on on the plane, would stay on the

plane as any extra motion would only increase the cost. We can also think that a smooth

change in the terminal condition should lead to a smooth change in the optimal trajectory.

Using these two facts, we must come up with an approximation architecture to map the

optimal trajectory on the torus to the full 3-D problem. For the Lie group elements, we can

do this by simply conjugating by a group element that varies smoothly and whose initial

and end conditions satisfy the problems boundary conditions. The Lie algebra elements can
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also be rotated on or off the torus. We should be able to get some further bounds as we

expect the optimal motion to not have any extra deviations, i.e. few critical points for any

of the derivatives of the conjugating element.

The Hamiltonian vector fields can also be projected onto the torus to become

functions of the rotations on the torus and the co-tangent vectors, approximating the three

dimensional dynamics. These vector fields will be part of the new input in the planar optimal

control problem for approximating a full dimensional optimal control trajectory. From this

projected approximation, we should be able to get an idea of how the momentum vectors

transform through the conservation of energy and momentum. This is slightly complicated

by the control torques, which disrupt this conservation, but we also get a new conservation

from the control Hamiltonian. To handle this complication, we can use rescaling and sam-

ple trajectories to guide the approximation. In theory, a dense approximation architecture

might give us a method to algorithmically converge to an optimal solution [2]. This method

can be enhanced by computing the control adjoint vectors and control Hamiltonian to look

for local optimality of solutions, as well as sampling trajectories and incorporating infor-

mation from the costs in the approximation architecture; a method known as reinforcement

learning. Finding a way to incorporate all the different approaches, I believe, has great po-

tential in developing a robust approach to difficult non-linear control problems. However, as

they all also pose difficulties in implementation this cannot be fully explored in this thesis.
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3

Results

The equations obtained are very non-linear and are not eligible for an analytic

solution. The analysis can be done through computer simulations of the dynamical system.

The simulation of the planar system is straight forward. All of the programming is done us-

ing Matlab. In the algorithm used for approximating the integral we would like to maintain

conservation of the Hamiltonian and any other conserved quantities. The algorithm used

mixes a basic second order method with stochastic optimization to ensure conservation.

The tangent vectors are computed at the point and then again at a partially evolved point.

The two tangent vectors are then added together with a set of randomly generated weight-

ing factors, and the vectors that best conserve the Hamiltonian are chosen. This methods

incorporates the information from the immediate tangent vector, as well as tangent vector

at a slightly displaced location, picking up some of the second order dynamics. As we do not

know exactly where the evolution will take the system, this stochastic process of evolution

allows us to on average get very close to the sub-manifold determined by the conservation

laws. Figure 3.1, shows an uncontrolled trajectory on the torus manifold. Figure 3.2 shows
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Uncontrolled Chaotic Trajectory on Torus

Figure 3.1: This is an uncontrolled trajectory initiated from a stationary horizontal position.

the conservation of the Hamiltonian. It is very near to zero, with blips on the order of 10−5

when the kinetic energy is at a max.

When the controls are added the computation is slightly more difficult. The

method used is to calculate optimal trajectories backwards. We do this by calculating

trajectories for a variety of terminal conditions for the co-state variables. To get optimal

trajectories I limit the trajectory to a subset of the full manifold and tangent bundle and

kill trajectories that go outside, avoiding unnecessary computations. A distance function is
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Hamiltonian for trajectory in Figure 3.1

Figure 3.2: The Hamiltonian demonstrates that energy is very nearly conserved except for
some numerical distortion.

used to check how far from our desired initial conditions the trajectories died. The minimal

distance is used as a seed to randomly generate new terminal conditions to get closer to the

correct initial conditions. An unexpected complication was that not all the end conditions

that set the control Hamiltonian kept it at zero. Many conditions would immediately jump

to a different value and stay near there. I am not sure what other constraint could be used

to narrow those out, the sub-manifold of the good end conditions appears to be a 2-D non-

linear surface. A plot of points near or on that surface is withheld as it is very difficult to

recognize the surface in two dimensions. One possibility to recover the constraint onto this

surface would be to set the time derivative of the Hamiltonian to zero, but this is an imprac-

tical calculation. Incorporating the possibility of non-conservation of the Hamiltonian into

the distance function works to narrow out the end conditions off the surface. The search is
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Data for trajectories in Figure 3.3
Color End Condition Cost Distance
Blue 4.98, 0.84, -0.04 0.84 0.57
Green 5.23, 0.88, -0.10 0.80 1.00
Red 5.10, 0.85, -0.07 0.84 0.59
Teal 6.08, 0.99, -0.15 0.72 0.97
Pink 3.58, 0.61, 0.04 1.00 2.25

Table 3.1: The values of constants used for these trajectories were, l1 = 1, l2 + 0.5,m1 =
m2 = 1, g = 0.98, a = 1, b = 0.5.

particularly difficult as the terminal condition space exhibits both sensitive dependance on

small changes as well as near optimal conditions in a fairly wide range. Varying by as much

as 0.01 could totally throw off the trajectory, where as close trajectories could be found at

a distance of around 3.

The table provides the data for the five trajectories graphed. The end conditions

that generated the condition are given. The first number is the end condition for the tangent

vector, n. The second is for pα, and the third gives the end conditions for pη, pν according

to the transversality condition.

It took a fair amount of tinkering to get the values close, but once it was close the

distance function did its job to use the iteration to find the optimal solution. The distance

function I use is

d = 25 sin(α(0))2 + 10 sin(β(0))2 + 10(− cos(β(0)))2 + 0.1|η(0)|2 + 0.1|ν(0)|2 +H(0)2,

where the cos(β) is only added if it is negative. The weighting factors only really mattered

to relate all the terms on the same order of magnitude. Figure 3.3 shows a variety of

trajectories that came up in the search for optimality. Really all of the trajectories solved

for were optimal, simply with different starting positions.

From a Taekwondo perspective, some of the close trajectories had good technique,
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Optimal Trajectories on the Torus

Figure 3.3: Five nearly-optimal trajectories. The big circle on the torus represents the
rotation of the first, hip, joint. The trajectory goes from left to right, starting near zero
and ending with only rotation of the second, knee, joint.



48

Diagram for a kick

Figure 3.4: This graph is of the blue trajectory on the torus. The hip joint is at zero, and
the knee joint traces an arc. The second arc shows the trajectory of the foot.
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Torques for an optimal kick

Figure 3.5: The torques, γ, µ, are plotted for the blue trajectory from the torus.

whereas others did not. Maybe adding the maximal power to the cost would help with the

technique, as the optimal trajectories ended up converging to what looks like pretty weak

kicks. It is not too much of a surprise that some of the near optimal trajectories look fairly

different. In practice, much of getting the right kick is to be able to feel it, not necessarily

know how to throw exactly the same kick every time.

For the full problem the only result is presented as an approximation with an

optimal planar trajectory. To do the approximation we need a mapping from Rα → wα.

We need the mapping to satisfy the beginning and end conditions, such that wα(0) =

1, wα(t1) = 0.5(1− b̂1 + b̂2 + b̂3). The simplest mapping is

wα = cos(α)− sin(α)
1
√
2
(b̂3 + b̂2),

wβ = cos(
β

2
)− sin(

β

2
)b̂2. (3.1)
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Three dimensional plot of an optimal planar kick.

Figure 3.6: This is the plot of the blue trajectory from Figure 3.3, in 3-D space using the
mapping of Eq. (3.1).

Using this mapping the blue trajectory from Figure 3.3 is plotted as a three di-

mensional kick in Figure 3.6. We expect this not to be optimal as we have not taken into

account any of the new dynamics.
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4

Conclusion

The overall project was a success in learning to apply the tools of Lie groups, Clif-

ford algebras, and control theory to a difficult physical problem. Many of the computations,

while straight forward are tedious. I believe an effective computer algebra problem would

greatly help with these computations. The non-linear manipulations are, however, a little

too complex for Mathematica and Matlab to handle neatly. One of the most promising uses

of the Clifford algebra is how the manipulations could be handled efficiently and generally

by a computer.

The overall calculation of optimal trajectories is still difficult and computationally

intensive. While this approach can give a pretty good understanding of a well behaved

system, it may not be well suited for real-time optimal control, or optimal control of systems

with less well behaved constraints. The final step of achieving the optimal solution for

the planar problem exemplified how this sort of modeling is as much an art as a science.

Significantly different optimal trajectories were found near the optimal solution. These

differences were small enough that the model was not accurate enough to tell them apart
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in terms of real optimality. This also showcases the room there is in the martial arts for

very different in styles and techniques to still be effective.

An area of further research is to introduce stochasticity. In Taekwondo, one is

never exactly sure where the target is going to be in the next moment, so modeling the

kick for a randomly moving target is of interest. There are also some interesting trade-

offs in terms of computational ease when entering the stochastic case. Certain classes of

control problems can be solved with path sampling, where superposition can be used even

for non-linear problems.

The approach taken in this thesis may not really help our understanding of martial

arts. These arts have developed over thousands of years and take into account many factors

that would be nearly impossible to incorporate into a model. However, the problem is

very much related to many practical problems for which such a deep understanding has not

developed.
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Appendix A

Derivation of Equations

A.1 Planar Problem Mechanics

We calculate the kinetic energy by adding the rotational energy and the transla-

tional energy of the center of mass for the second limb,

cm2 = Rα(r1 +Rβ(
r2
2
)) = eiα(−il1 + eiβ(−il2)),

˙cm2 = −ieiα(el1 + eiβ(el2 + nl2)) = −ieiα(el1 + eiβl2(e+ n)),

| ˙cm2|
2 = −(e2l21 + (e+ n)2l22 + l1l2e(e+ n)(eiβ + e−iβ))

| ˙cm2|
2 = (l21 + l22 + 2l1l2cos(β))|e|

2 + l22|n|
2 + 2(l22 + l1l2cos(β))en.

Now the kinetic energy part of H can be expressed in matrix form taking into account that

the tangent vectors are imaginary. Let v =




e

n



, the kinetic energy is

−
1

2
v�




I1 + I2 + (l21 + l22)m2 + l1l2m2(Rβ +Rβ) I2 + l22m2 + l1l2m2

1
2(Rβ +Rβ)

I2 + l22m2 + l1l2m2
1
2(Rβ +Rβ) I2 + l22m2



 v.

(A.1)
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The potential energy is simply m1gh1 +m2gh2 where the heights are the imaginary part of

the complex vector to the center of mass of the limbs.

V = gIm(m1
l1
2
eiα(−i) + m2e

iα(−il1 + eiβ(−il2))

= −g
1

2
((Rα +Rα)(m1

l1
2
+m2l1) + (RαRβ +RαRβ)m2l2

= −g(cos(α)(m1
l1
2
+m2l1) + cos(α+ β)m2l2.

The derivative of the metric matrix is easy to compute. Notice that every entry is imaginary,

−
δG

δRβ

=




l1l2m2(Rβ −Rβ)

1
2 l1l2m2(Rβ −Rβ)

1
2 l1l2m2(Rβ −Rβ) 0



 .

When computing the derivatives, the partial derivatives are straight forward to compute.

The derivatives that we are actual after are the adjoint to these derivatives, since all of

them are purely imaginary the complex conjugation simply switches signs.

A.2 Planar Problem Controls

Once again all the derivatives computed are imaginary, and are actually the nega-

tive partial derivatives when we take into account we want the output in the dual space to

a purely imaginary variable. A few terms pose a little difficulty so there is brief discussion

of the most complicated terms. A particularly tough term with appears in the equation for

χ
pβ

H
is

−
δ < χν

H
, pν >

δRβ

=
δ

δRβ




1

2

�
η ν

�
δG−1

Rβ




η

ν



−
δV (Rα, Rβ)

δRβ



 pν .
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The first term is particularly daunting, but is just a matter of using the product rule on

the derivative of the inverse linear transformation,

1

2

�
η ν

�
δ2G−1

δR2
β




η

ν



 =

�
η ν

�
(2G−1 δG

δRβ

G−1 δG

δRβ

G−1
−G−1 δ

2G

δR2
β

G−1)




η

ν



 .

Another novel term is from the inner product of the co-state variables and the tangent

vectors. Appearing in the Hamiltonian vector field equations for pη, pν is





∂

∂η

∂

∂ν




�




e

n



 ,




pα

pβ




�
= −

�
η ν

�
G−T




pα

pβ



 = −G−T




pα

pβ



 .

A.3 Full Problem Mechanics

The derivation of equations for the full problem proceeds in the same manner but

involves non-commutative algebra. For the kinetic energy we must calculate the energy from

the motion of the center of mass of the second joint as well as the rotational energy. The

[, ] operator is half of the commutator of a vector and bi-vector and is also the Lie algebra

product between two bi-vectors. When operating on a vector and a bi-vector the output is

always a pure vector on the plane of the bi-vector, orthogonal to the original vector. When

operating between two bi-vectors the commutator returns a mutually orthogonal bi-vector.

We are really only concerned with the real number associated with the magnitude of the
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derivative of the center of mass vector, which simplifies slightly,

˙cm =
d

dt
wα(r1 + wβr2w

−1
β

)w−1
α

˙cm = −
1

2
wα((er1 − r1e) + (e(wβr2w

−1
β

− wβr2w
−1
β

e) + (wβnr2w
−1
β

− wβr2nw
−1
β

)))w−1
α

˙cm = wα([r1, e] + [wβr2w
−1
β

, e] + wβ [r2, n]w
−1
β

)w−1
α

˙cm2 = [r1, e]
2 + [wβr2w

−1
β

, e]2 + [r2, n]
2,

+2(< [r1, e], [wβr2w
−1
β

, e] >1 + < [r1, e], wβ [r2, n]w
−1
β

>1

+ < [wβr2w
−1
β

, e], wβ [r2, n]w
−1
β

>1).

Note that this is now expressed in terms of the inner product on the vectors. For the

purposes of getting a metric on the bi-vectors we wish to convert it to an inner product on

bi-vectors. In the following manipulations take a,b to be vectors, and C,D to be bi-vectors.

Inspired by the geometry of the products we see first that using I the pseudo-scalar, which

commutes with all vectors and squares to -1. For the purposes of these calculations the

subscripted inner products are the graded inner products of the algebra. When the inner

product returns without a subscript it is understood one of the elements is to be conjugated

(switch signs). The geometric product can switch over the inner product by reversal in the

order of multiplication. The inner product relates to an inner product of bi-vectors by

< a, b >1= −
1

2
(aIbI + bIaI) = − < aI, bI >2 .

The terms we have to deal with appear like

< [a, C], [b,D] >1 = − < [a, C]I, [b,D]I >2=
1

4
< aCI − CaI, bDI −DbI >

=
1

4
< C, bDa− abD + aDb−Dba >=< C, a ∧ [D, b] > .
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The term on the right is now a single transformation of the bi-vector D. We would like to

write the whole kinetic energy part of the Hamiltonian in terms of these inner products and

a linear transformation,

1

2
(< e,Rα(I1)(e) > + < (e+ n), Rα(Rβ(I2))(e+ n) >

+m2(< e, r1 ∧ [e, r1] > + < e,wβr2w
−1
β

∧ [e, wβr2w
−1
β

]+ < n, r2 ∧ [n, r2] >

+2(< e, r1 ∧ [e, wβr2w
−1
β

] > + < e, r1 ∧ wβ [n, r2]w
−1
β

>

+ < e,wβr2w
−1
β

∧ wβ [n, r2]w
−1
β

>))

⇒

1

2
(< e,Rα(I1)(e) +Rα(Rβ(I2))(e+ n) +m2(r1 ∧ [e, r1]

+Rβ(r2) ∧ [e,Rβ(r2)] + 2(r1 ∧ [e,Rβ(r2)] + r1 ∧Rβ([n, r2]) +Rβ(r2) ∧Rβ([n, r2]))) >

+ < n,Rα(Rβ(I2))(e+ n) +m2r2 ∧ [n, r2] >).

The transformations on the right hand side of the inner product are what appear in Equa-

tions (2.11), for the metric in the Hamiltonian.

To take the derivative of the kinetic energy part of the Hamiltonian we need to

refer back to the definition, Eq. (1.2),

< a,
δ < π,G−1(wα)π >

δwα

>=
d

dt
< π,G−1(wαe

−
at

2 )π >= − < π,G−1 d

dt
G(wαe

−
at

2 )G−1π > .

The general form for a term in G can be expressed in terms of two linear transformations,

t, s, that do not depend on Rα, like G(π) = t(Rα(b(π))). These terms may appear many

times. As for the inertial tensors that are themselves rotated, we can consider it as just

two applications of the rotation and the inverse rotation. Using the product rule we can

deal with these separately. The time derivative appears as the commutator with a tangent
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element and passes inside the first linear operator, t(Rα([b(π), a])). Here we continue trying

to find the derivative for the inverse transformation appearing in the equations,

< G−Tπ, t(Rα([b(G
−1(π)), a])) >=< R−1

α (tT (G−Tπ)), [b(G−1(π)), a] > .

We can cycle the inner product and the commutator to get,

< a, [R−1
α (tT (G−Tπ)), b(G−1(π))] > .

This is obviously a little more complicated then the case where this derivative is a scalar.
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