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Abstract

The goal of this project was to create a model of a bowed string so that input of the
physical parameters of a string would produce the characteristic sound of a bowed string with
such parameters. Such a model was not found, but important information is discussed and
methods for future study is suggested.

Introduction

In the area of solving for musical instruments and musical systems there has been much
work done on plucked strings, plucked string instruments and bowed string instruments, but little
work since Helmholtz on the bowed string. In considering the importance of the motion of a
bowed string, consider how currently electric violins, violas, etc., and bridge mounted pick-ups
do not depend on the body of an instrument in the sound production, yet the sound is distinctly
that of a bowed instrument. Much emphasis is put on the body shape, material properties,
varnish, etc., of the instrument, but in the end the instrument is only an amplifier for the
vibrations of the string.

The qualities of a string have a very strong musical importance. There are many different
types and brands of commercial strings available. The physical properties of strings varies
greatly, and a trained musician can easily tell the difference in sound. Through trial and error, a
musician can find which types of strings he or she prefers. Over many years (steel strings were
first introduced almost 200 years ago) the design of commercial strings has been optimized.
With the use of a computerized model it would be easier to pick the right string for a particular
musician and instrument, understand how the current design and properties of commercial strings
optimizes the musical qualities, and design new types of strings.

Theory

This project is an attempt to use knowledge and theory that has been discovered over the
last one hundred years and a new set of empirical data to solve for a bowed string.
The frequency of vibration of a string is given by:
n T
Eq. 1: f,% "2tV &
In Eq. 1, n is any positive integer. [n=1] gives the fundamental frequency while higher values
give the harmonics. For this project units of cenitmeter-gram-second are used. L is the length of
the string given in centimeters. T is the tension of the string in dynes. 4 is the linear density
given in grams per centimeter. This equation is useful for determining an unknown value when
the other values are known, but does not help in determining the relative amplitudes of the
harmonics. The general form for the displacement of a vibrating string is given by:

v(x, t) = ians:'.n[m—m] Sin[w, t]
‘Eq. 2: n=1 L



We are not able to measure the displacement of all points along the string, so the spatial part of
the expression is not of any use. There is one location on the string that is measurable, and that is
at the bridge. The expression for the displacement of the bridge is:

Y (£) = ) anSinfwn t]
Eq. 3: n=1

For a perfectly flexible string, w,=nw=2n*nf,, but for strings with finite stiffness the higher
modes of vibration are not perfectly harmonic. They are shifted to higher frequencies.

The modes of vibration can be given as:

Eq. 4:

Eq. 4 is found in Morse and Ingard 1968. Q is Young’s Modulus. S is the area of the cross
section of the string. x is the radius of gyration. (,x=r/2 for a circular cross section.) If we let
0=VQSx? and call § the stiffness factor, then we have:

2
£fn =nfy (1+ ° )
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Eq. 5:

It is now clear how the stiffness, length and tension affect the harmonic shifting. All of the
above values can be measured independently, but for a commercial string it would be very
difficult to measure Q (Young’s Modulus) because the strings are of inhomogeneous
cross-section, and the Q found by bending the string over a large angle might be different than
the characteristic Q in small angles of deflection, so it would be best to find Q or J by fitting the
above functions to empirical data.

Finding a function to describe a, is much more involved. The factors that determine a,
include but are not limited to: driving function of the bow, the impedance of the end support and
internal damping.

First we look at the driving function of the bow. Helmholtz discovered in 1877 that the
motion of the string is not as simple as it appears to the eye, but the slip stick action of the bow
on the string creates a kink that travels along the envelope of the string. It is this parabolic
envelope that is observed by the eye. The complications of the bow-string interaction can be
simplified by simply considering the resulting motion of the string. The motion of the kink can
be described by the following parametric equations written in Mathematica:

Eq. 6:
c*t nxCcxt nxCcxt
= % FractionalPart % Si Sin + +Uni -Sin
x= long [ | *Sip(Sin] = =] + 1oogs thitStep[-sin[ = " ~1]
y= amplitudes sin[ <7 * %)
long

To clarify, the pair of parametric equations in Eq. 6 do not describe the motion of the string, they
describe the motion of the kink. The shape of the string at any moment is two straight lines from
the ends to the kink. This is the resulting plot from the above parametric equations:
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Figure 1: Spatial Plot of “Kink™ in String

The transverse force on the bridge is the tension of the string times the slope at the bridge, which
is simply y over x because the string makes a straight line. With a correction for the negative

slope, the derivative is written as:

Y *Sign[Sin|

nxcxt
Eq. 7: b 4 2*lcng]]

The temporal plot of Eq. 7 is shown here:
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Figure 2: Temporal Plot of Transverse Force on Bridge

This is similar to a triangle wave. The function was converted to a data file, then fit to a trig
function so that the relative amplitudes of the harmonics could be determined.



Figure 3 is a graphical representation of the harmonic amplitudes shown with the power
spectrum of a triangle wave for reference.
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Figure 3: Relative Amplitudes of Bowing Function and Triangle Wave

The amplitude levels shown in Figure 3 are the basis for determining a, . The other
factors such as internal damping and bridge impedance will raise or lower these amplitude levels
according to the theory presented next. Note that Figure 3 shows the natural logs of the
amplitudes. Also notice that the points for the triangular wave form a smooth curve, but the
points for the bow function do not follow any discernible pattern, and so no attempt is made to
try to fit this data to a function.

The next factor that affects a, is the internal damping. An example of how internal
damping affects sound is that of a guitar with steel strings versus nylon strings. Steel strings give
a brilliant sound and nylon strings give a mellow sound. The nylon strings have higher internal
damping. Internal damping is frequency dependent and damps out the higher harmonics. The
difference in tone quality is due to the higher internal damping of nylon. A good description of
internal damping is found in Fletcher and Rossing 1991. Internal damping can be understood by
considering Young’s Modulus to be Q =Q, +iQ.. Q creates an instantaneous strain to an
applied stress, and Q, creates a strain after a characteristic time 7 . The energy lost to internal
damping is proportional to 7fQ,/Q; . Q»/Q; may be less than 10 in some hard crystals and as
high as 10" in some polymer materials (Fletcher and Rossing 1991). Note how internal damping
is frequency dependent. I do not have the means to measure Q,/Q;. I had planned on finding
published values of Q./Q; for certain materials such as nylon and steel, finding homogenous
wires of those materials, testing those wires, and interpolating the data to find Q»/Q; of the
strings. Unfortunately, after an extensive search I was not able to find any other information on
the complex Young’s Modulus.

The final factor that affects a, is the energy lost to the end support or bridge. The first
thing to consider in finding the energy transfer to the bridge is the impedance (Z). Impedance is
the ratio of force to velocity. Since the impedance of the bridge is much greater than that of the
string (i.e. the bridge moves very little compared to the string), the energy transfer can be
approximated as Zring / Ziriage- The impedance of a string is VTu. This theory matches



observation as instruments with more tension on the strings produce a louder sound. The effect
of linear density is not so obvious because as linear density increases, the pitch is lowered, and
the perceived sound intensity is less for lower tones.

For a better understanding of impedance, consider the bridge as a driven oscillator.

d
e x +2B — +wp x= ae 2t
Eq. 8: dt2 dat
R » K
a= — B: —— 0o = — .
where: m 2m m f = frequency of string

Eq. 8 is a differential equation that can be rewritten as the algebraic equation

(-mw? - iRw + K) De™* = Fe"¥®

Eq. 9:
D is the displacement and can also be written as
D= — F
Eq. 10: - 1wZy

From Morse and Ingard
Eq.11:  FO=N@Dy®)

The y’ term in Eq. 11 should be apparent because the amplitude of vibrations on the string should
be proportional to the force on the bridge. The VuT term (also the impedance of the string) is not
apparent and leads to a useful result. So the displacement of the bridge becomes:

o Zeming¥' (B)
Eq. 12 ~10Zpridge

The mechanical impedance is given by

Zm=—imm+R,.,+iE
Eq. 13: w

Since the bridge is very light and stiff we know that m<XK and that co<wy.

Zn can be approximated as Ry+iK/mw. Ry is small, but still appreciable because it is the factor that
ultimately leads to the sound production by the instrument. By fitting D to the data it will be
possible to determine the relative magnitude of K and R,.

Method

Due to the great amount of time necessary to measure and analyze data from each string,
the sample strings were limited to one set of Super Sensitive Red Label violin strings. This type
of string is very common.



The mass of the strings was too small to get an accurate measurement of the linear
density, so the linear density was made a dependent variable with tension and length the
independent variable and frequency the measured quantity.

To reduce resonances from an instrument and to allow tension to be an independent
variable, measurements were not taken on an instrument, but rather an experimental set up shown
here.

Figure 4: Experimental Apparatus

Four different strings (thus four different linear densities, stiffnesses and internal dampings) were
measured with three different tensions and two different lengths for a total of 24 total data sets.
Tension was applied by attaching weights to the string and hung off the side of the work bench.

) Strings were bowed with the attempt to get the best sound quality possible. There are
many different types of bowing styles, but using any type of bowing other than steady, sustained
bowing would complicate the experiment far too much.

Three different measuring devices were available: a Shure microphone, a Super Sensitive
body mounted pick up, and a Matrix bridge mounted tuning pick up. The Matrix pick up proved
to be the best, giving high amplitude levels and low harmonic distortion. A test with the Super
Sensitive pick up on a violin showed no noticeable difference in the sound quality when the
Matrix pick up was in place. The Matrix pick up was connected to an Avance AC97 sound card.
Sound samples were recorded and filtered with Magix Music Studio.

Sound samples were analyzed with Mathematica. Mathematica converts the sound files
in Wave format to plain data using the command ReadSoundfile. It is then necessary to
manually cut one period of the sound sample. Using the command TrigFit and a default of 15
harmonics, the data were fit to a sum of sines and cosines.



Here is an example of one such fit:
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Figure 5: Fitting a Sine Function to Data Points

As you can see the fit matches well. Fifteen harmonics was enough for most data sets,
but some had to be increased to as much as eighteen. I was not able to find a way to fit the data
with the shifted harmonics, so all fits assume a perfectly flexible string. Even without the shifted
harmonics, the data fit extremely well. This indicates that stiffness was small for these strings.

The maximum amplitude of each sound sample was noted to help determine Z,,.
Analysis

The first thing that became apparent was that the power going to the bridge was not just
proportional to Zgyine/Ziriaee because the impedance of the string affected how forcefully the string
could be bowed. The power going to the bridge was more likely proportional t0 Z2ying/Zbridge..

The sum of sines and cosines is dependent on the relative phases of the different
harmonics. The phases of harmonics are important in testing the fitting, but not important in
producing sound. Our ears are phase insensitive, and adjusting the harmonics to have the same
phase will make it easier to evaluate the sound.

Considering that Asin@ + Bcos¢ = Csin(f+9) where C=VA2+B?, I converted the sums
of sines and cosines to a sum of sines. A sample of the coefficients are plotted here.
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Figure 6: Sample of Relative Harmonics

After looking at these sample plots and the others not included here, several things
become apparent. 1) The fundamental is all but missing. 2) The harmonics do not follow any sort
of pattern and therefore can not be fit to any function. 3) Right in the middle of the powerful
harmonics there is a place where the power drops down very low.

This third observation deserves further study. This drop might be caused by the bow
placement. Further measurements were taken to study the affect of bow placement.



Measurements were taken on a violin with the body stuffed to help damp out resonances
from the body. Bowing was done at fractional lengths along the string of 1/5, 1/16 and 1/10.
The resulting power spectrums are shown here
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Figure 7: Relative Amplitudes Considering Bow Placement

Considering the finite width of the bow and difficulty of accurate bow placement, these
results show that bow placement has a huge affect on the power spectrum. After more research I
discovered that bow placement causes ripples in the aforementioned kink on the string, which

causes this affect (Fletcher and Rossing 1991).

This presents a problem for the original intent of this project. How can the motion of a bowed
string be solved for when something as simple as the bow placement has such a large affect on
the power spectrum?

Besides trying to fit a function to the power spectrum, which does not seem possible, it is
still possible to find the complex impedance of the bridge and the relation of sound intensity to

the impedance of the string and bridge.
As mentioned before, the amount of power that the player can put into the string is

proportional to the impedance of the string.

Before dealing with the impedance of the strings, it is necessary to find the frequency of
vibration, and then the linear density of the strings.

The pitch was found in each sound measurement from manually counting the number of
bytes in one period. The sampling rate of the recording was 44.1k bytes per second, the same
sampling rate as a compact disc. The frequency was therefore 44.1k/n, where n is the number of

bytes in one period.
Having found the frequency, and knowing the tension and the length, it is now possible to

calculate the linear density.

Eq. 14: u=T/(4£1%)



This is a plot of the calculated linear densities.
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Figure 8: Linear Densities Found by Eq. 14

Units are grams per centimeter.
Every string had four measurements, thus there are four points for each string. The
averaged u for each string is
E: 0.0073 g/cm
A:0.013 g/cm
D: 0.034 g/cm
G: 0.059 g/cm

From the same measurements above, Impedance (Z) is found by Z=VTu

impedance

Figure 9: Impedance of Strings

Now we wish to see how impedance and frequency affect intensity. From theory we expect
Intensity to be proportional to

22 st
_ O string
Eq: 15 ~10Zpridge



This is a preliminary plot of Zgi, vs. Intensity to see if we can spot any relation
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Figure 10: Impedance of String vs. Intensity of Sound
There is a huge amount of noise due to the difficulty in controlling the power input. Even
so, an upward trend can be spotted.
From here we want to see if we can find the complex values of Zyqe Which is in the form

Eq. 16: Z=R+K/iw

A plot of @ vs. Zyiaee Where
Z - Ztring
Eq. 17: wl
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Figure 11: Angular Frequency vs. Impedance of Bridge

The x axis is frequency and the y axis is Zirigee, but the values of Zyigee are arbitrary. The
important part is the shape of the curve so that we can find the relation of K to R. The equation
of the fit curve is



.17
-0.26362 + ~1+1—%———§
Eq. 18: X

Eq. 18 is a reiteration of Eq. 13. As was expected, the value of K=119 (due to stiffness of
bridge) is much greater than R=0.26 (due to damping).

Discussion

A different method is necessary to attain the goal of this project. After further research it
seems like the best method would be to train a neural network. Using a neural network has been
used to solve for the complete instrument of several plucked string instruments. A bowed string
is much more complicated than a plucked string, but a neural network could solve for just the
string.

A neural network works much like an animal brain, developing connections of varying
strengths among the neurons. Neural networks are useful in situations where there is a great deal
of noise or the function is extremely complicated. Neural networks are being used in voice
recognition and signature recognition. Neural networks also need a large number of input and
output sets to be trained properly.

This seems to be the best path to solve this problem, but it would still be a very long
process. Many more sound samples would be needed. Those sound samples would have to be
analyzed and presented to the network as a power spectrum. Presenting the entire sound sample
would be far too many data for the network to handle. Accurate measurements of all physical
parameters would be necessary. No fitting to find unknown parameters would be possible.

This is the schematic of how the neural network would be used.

Physical Parameters ------- > [Neural Network Training] ----- > Sound Sample

Sound Sample ------- > [Neural Network Testing] ----- > Physical Parameters
Physical Parameters ----- > [Neural Network] ----- > Generated Sound
(to predict how different parameters will affect the sound)

Sound Sample ------ > [Neural Network] ------ > Physical Parameters
(to judge the parameters of a string by just the sound produced)

This project will require a great deal of work, but at this time I have a much greater
understanding of what is required than when I started this project. 1 see a lot of hope in this
endeavor and I would like to continue working toward the original goal.
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