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ABSTRACT
Objective: write a program in Mathematica to cidtel Density of States (DOS)
and Band Structure (BS) of a crystal structure wdiigan lattice constants and periodic
potential in real space. This program providesrecise and simple method of calculating
DOS and BS, and therefore provides a basis for noat@ptimization of various
properties of a nanostructured system. The proggdested under known conditions and

the results closely match the known result.
1. INTRODUCTION

Energy consumption has become an important issely,lavith global shortage
on commonly used fossil fuel energy sources sudil asatural gas and coal.
Unfortunately, a very large percentage of all epe@nsumed relies on fossil fuels. The
current efficiency of converting fossil fuel to léa forms of energy is in the 30% to 50%
range for thermal power plants, and lowers forrimaecombustion engines, with the
majority of energy lost in terms of waste heattHeory, the waste heat can be recycled
and generate electrical energy via ThermoelecfifiecE

Thermoelectric Effect converts heat directly intecgricity. One of the main
components of thermoelectric effect, the Seebefelciefis the discovery that when two
ends of a semiconductor are exposed to a temperdifterence, there’s a voltage
difference generated across the semiconductor m@latEne magnitude of electric
potential created by a temperature differentialSegbeck effect is measured by Seebeck
coefficient (S), also known as thermopower. Theb8ek coefficient has units of V/K,

and in practice a material with several {0IK is considered a good thermoelectric



material. Microscopically, Seebeck coefficient degeelargely on the Density of States
of a semiconductor material.

Photonic crystal is another application of band gagineering, which essentially
changes DOS and BS to create desired optical grep@f a crystal. When a beam of
photons incident on a crystal, if the incident md energy is roughly the same as the
bad gap, it gets absorbed by exciting an elect@onthe other hand, if the photon’s
energy is nowhere near the energy of the gap (thenhighest energy of the lower band
to the lowest energy of the higher band), the phgets scattered off. Therefore, all
absorption of light happens near the band gap gnmargye. By changing the BS of a
crystal (create gaps at degenerate energies, ddjiggtt of the gap, etc) we can
effectively change the absorption energy of thetedyand therefore its optical properties.
In theory, the band gap acts as a “gate keepealldw either absorption or scattering of
incident photons. Both photonic crystals and theslexctric nanostructure can be
modeled by the Kronig-Penney potential and the BEROS can be calculated in order
to investigate in the properties of the materials.

However, analytical calculations of BS and DOSanly possible for very simple
cases such as free electron. For purposes susalastng the Kronig-Penney model in
one, two and three dimensions, the calculation nestone numerically. The objective
of this project is to develop a program in Mathenaato calculate numerically the
Density of States (DOS) and Band Structure (BS) ofystal with given lattice

parameters and potential.



2. CODING IN MATHEMATICA

2.1 Defining the lattice

The procedure of this project mainly contains ggpam that calculates the DOS
for an arbitrary crystal with an arbitrary but knoywotential. The potential of the
guantum dots are given, and the simulation is @g@seming there's no electron-electron
interaction. Appendix 1 is a complete code of thegpam written in Mathematica
version 7.

The program starts by constructing lattice sitgsagented by points with real
translation vectors;, a, andas. Using the following equations

L= — —

== = =, == = =, = == 2.1
al'a2Xa3 2 az'a3Xa1 3 a3'a1Xa2 ( )
the basis of reciprocal lattice vectdrg, b, and b; can be calculated and a list of

vectors

Gn = Zﬂ(nlbl + nzbz + n3b3) (2.2)

can be generated using integass n, andns. G, is linear combinations of reciprocal
lattice basis vectors. In this case, a listgf vectors can be generated to contain all G-
vectors from one point to another in the lattice.riake the calculation possible, a finite
set of G vectors must be defined. In the caseisftoject, a Geutoff value is defined to
be the maximum amplitude of all G vectors. If a€&tor has magnitude longer than
Gcutoff, then it is not considered in the calcuati

In order to realize the elimination process désatiabove, first a maximum value
of n (n,,,4) Must be defined by dividing Gcutoff by the smstileeciprocal lattice vector,

then a list of triplets of n values are generatethf—n,,,,, t0 n,,,, for each ofn,, n,
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and n. This list of integer triplets have the form af,( n,, n3), and the dot product of
(n4, n,, ng) and 2Pi*p,, b,, b;) constructs a list (named AllGnlist) of all G vexd to
be considered. The subroutine “GnMagnitude” catqk,, n,, n3;) and returns the
magnitude of the corresponding G vector. The conthi&elect” in Mathematica 7

is used in combination with the “GnMagnitude” sultioe to “scan” through all
elements in AlIGnlist and discard those with magghéts larger than Gceutoff. The list of

surviving elements is named Gnlist.

2.2 The Hamiltonian Matrix

Once we obtain a finite list of G-vectors, a Haonian matrix can be formed in
order to calculate the dispersion relation whictedaines the energy of an electron in
the periodic potential. The Hamiltonian of an elenthas two components: potential
energy and kinetic energy, so the Hamiltonian masrthe sum of two matrices: the
potential energy matrix and the kinetic energy matr

The potential energy matrix is simply found by ass\g the periodic potential of
the lattice in real space is given. A Fourier Seaéthe potential in real space will yield
the potential in momentum spadég;, as a function of G-vectors. The terms in the

potential energy matrix is then obtained By G; — G;) wherei is the row index and

j is the column index.

For the kinetic energy matrix, we must briefly oduce Bloch’s theorem which
exploits the periodic nature of the potential.

2.2.1 Bloch’s Theorem

Define a periodic potential,



V(ir)=V(@r+R) (2.3)
Due to the translational invariance of the poténBéoch theorem states that
or(r + R) = e R, (1) (2.4)
where states are labeled by corresponding wavengekt For the purpose of this
project, the number of wave vectors determinesitieber of data points taken into
consideration by the numerical calculation.
With the help of Bloch’s theorem, we can write Kieetic energy matrix for each

k as

(G + k)?
2m

(2.5)

Only the diagonal terms of the kinetic energy nxadwrie non-zero. Therefore, the
Hamiltonian matrix is the potential energy matrishwits diagonal terms added by the
corresponding diagonal terms from the kinetic mxatn the program, HO represents the
potential energy matrix, and becomes the Hamiltomatrix later after adding the
kinetic energy terms onto all of its diagonal eletseln order to construct the
Hamiltonian matrix, a list of k-vectors is needed.

2.3Calculate BS

Band Structure (BS) can be obtained by diagonabzaif the Hamiltonian
matrix for each k-vector, since the eigenvaluegi@gies) change as a function of k, and
are different along different directions in k spa€eaditionally, BS is plotted along axes
of symmetry in a closed loop. For example, the &Safsquare lattice in 2-D is plotted

along the path of a— b — c—a (Fig. 2.2.1a)



Fig. 2.3a, The direction of k-vectors moving al@tigaxes of symmetry, with

— b, — by — _ (by+b,
vectosrab = ?2, bc = 71 and ¢g = Lztb2)

The subroutine “GeneratekMeshBS” creates a lidt wispecified population of
k-vectors along a path defined by a starting pantt an ending point. Each path yields a
list of k-vectors, and all lists are joined togetteeform a single linear list of k-vectors.
This list of k-vectors are then used to constroetilamiltonian matrix which when
diagnoalized, yields the eigenvalues which aregesiat the particular k point. The
lowest energy band can be found be grouping togétledowest energies, and second
lowest band is formed by the second lowest grougnefgies. A plot of all energy points
shows clearly the band structure of the crystaheefin the initialization step. The
routine is written in 3-D space but can be easibuced to 2-D and 1-D by changing the

length of lattice constants and confining the ptk-vectors in two or one dimension.

2.4 Calculate the Density of States (DOS)
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DOS as a function of E can be calculated by doiagra of all bands over all

energies of k-vectors, using the following equation
1
DQﬂE)z——}SSQ?—E@ (2.6)
Ny -

where N, is the total number of k-vectors covering the FBi#nply using the delta
function gives a histogram-like count for the D@%tead of yielding a function of E.
Since all electrical/thermal properties of soli@pends on DOS as a function of E, an
simple histogram is not as useful. By replacingdéka function,é (x), with the

following Gaussian distribution

=
o0(x) = 2.7
\V2mo? @7
where

x=E—E}

a dependence of energy is introducgg. is theith band energy of state labeled by k. To
reduce calculation time, and due to the fact tha# goints in the tail of the Gaussian
distribution is much less important than the omethe middle, any point that falls
outside of6og (can be defined to any value as desired by us¢ineaGaussian function
are neglected from the calculation.

A different set of k-vectors are needed for catioh of DOS. This new list of k-
vectors must cover all k-points within the FirstlBuin Zone (FBZ), instead of merely
running along the reciprocal lattice vectors. Thbrsutine GeneratekMeshDOS creates a
list of k-vectors that fills the FBZ. Due to thamslational invariance and symmetry of
the system, DOS found within the FBZ is the samin@®PdOS found within a reciprocal

lattice primitive cell. Therefore, to simply calatibn, a mesh of k-vectors is generated
8



within a reciprocal lattice primitive cell. GenezMeshDOS subroutine divides
reciprocal lattice vectors into user-specified nemtif segments, then creates integer
multiples of each segment in all three directiond #thus generate a “cube” array of
vectors, but arranged in a linear list. This lisk«ectors is then used in construction of

Hamiltonian matrix for calculating DOS.

. b2

o .
—

FBZ

Fig.2.3b, k-mesh is generated within the primited, with same area and thus same
number of k-points as FBZ.

Energies at each k-point can be found by diagoinalithe Hamiltonian matrix.
Taking the first several bands (again, user-sptjifand summed over all k-vectors
using the method described above, a DOS can bmbkskas function of E. Plotting
DOS using Mathematica’s built in plot command cartime consuming, due to large
number of calculations involved. By using the “BIQS” subroutine, which takes
number of points considered and width of the Gamsiinction as inputs, the DOS is
only calculated for a number equally spaced enpogiypts and thus the calculation time is

greatly reduced.



3. HOW TO USE THE PROGRAM

1. Open the file “Main.nb” with Mathematica
2. Evaluate the thread defining all subroutines
3. In a new Mathematica notebook file, type “Initi@izommand, input

argument with crystal parameters in the followiogat:

{{alx' A1y, alz}' {a2x’ azy, a2z}’ {a3x’ asy, a3z}1

Number of k — vectors along each path for BS,

Number of k — vectors for DOS in b1l direction,

Number of k — vectors for DOS in b2 direction,

Number of k — vectors for DOS in b3 direction,

Cut off for G }

This command initiates the k-mesh arrays and thei€&ocomponents of the
potential.

4. The command “PlotB8]” plots the first n bands of energy. The vertiaais
is energy, and the horizontal axis is merely a nemaunt of k-vector, with
no units (for example, 5 means tHelsvector in the list of “klistBS”).

5. The command “PlotDOS[Emin,Emagnergy step, signfiaplots the DOS
using the specified interval with energy betweenrEamd Emax, energy step
defines the interval between sampling points akhiegx-axis, and the width
of Gaussian curve being sigma. The vertical axisirsber of states and the
horizontal axis is energy. By default the firstd€hds are considered in the
calculation. If there are less than 10 bands, #tleihe bands are considered.

6. Units: This program is written with atomic unitsimnd @ =m =e = 1)

10



The program is written in version 7.0 and therefoey not be compatible with

older versions due to slightly different syntax &odnatting rules.

4. TEST WITH KNOWN EXAMPLES

In order to test the functionality of the progrdman the following tests:

4.1 Testing BS

Taking a square latticer; = (27,0, 0), a, = (0,2m,0), a; = (0,0,27/100)
which is very small compared @, and a,, to ensureb, is (1,0,0), and b2 is (0,1,0) and
b3=100 is very large and therefore even the smatiettiple of b3 is still omitted by G-

cutoff defined to be 2. There are 13 G-vectors cWitonstructs the following 13 by 13

matrix:
1.99 0O 0 © 0O 0 O 0 0 0 0 0 0
0 099 0 O 0O 0 O 0 0 0 0 0 0
0 0 05 O 0O 0 O 0 0 0 0 0 0
0 0 o0 1 0O 0 O 0 0 o0 0 0 0
0 0O 0O 019 0 o0 0 0 o0 0 0 0
0 0O 0 O 0 05 O 0 0 o0 0 0 0
0 0O 0 O 0O 0 O 0 0 0 0 0 0
0 0O 0 O 0O 0 0 051 0 0 0 0 0
0 0O 0 O 0O 0 O 0 201 O 0 0 0
0 0O 0 O 0O 0 O 0 0 1 0 0 0
0 0O 0 O 0O 0 O 0 0 0 051 0 0
0 0O 0 O 0O 0 O 0 0 o0 0 1.01 0
0 0O 0 O 0O 0 O 0 0 0 0 0 201

Table 4.1 The Hamiltonian Matrix for free electrank=(0,0,0)

and the calculated BS is as follows
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Fig 4.1a. The BS of a two dimensional crystal ¢attinder zero potential (2-D
free electron) along the path shown in Fig. 2.3a.

If we put a potential in the lattice, thus add rreme off diagonal elements to the

matrix, then we should see the splitting of bafide potentiall = 0.2e%" adds non-
zero off diagonal terms to the matrix, and shoadse the degenerate bands to split. The

following figure confirms the result.
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Fig 4.1b. Left: Band splitting caused by non-zeiagdnal terms under influence of a
potential. The band splitting is visible when conggbwith the plot with zero-potential.

Right: Same plot with zero-potential as comparison.

4.1 Testing DOS

The DOS of a free electron in one, two and thresedisions are tested using the
program and compared with the analytical result.

4.1.1 Testing in 1-D

Taking a square latticer; = (2m,0,0), a, = (0,21/100,0), a; =
(0,0,2t/100) which is very small compared @, and a,, to ensureb, is (1,0,0), and
b2 is (0,1,0) and b3 is very large and therefoendhe smallest multiple of b3 is still
omitted by G-cutoff defined to be 4.5. Under nogmtial, with 25 k-vectors along bl
direction and 1 k-vector along b2 and b3 directibie,one dimensional DOS of a free

electron is plotted in the following figure:
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Fig. 4.1.1 Calculated DOS of 1-D free electron supgosed withy/2E "z function. The
wave towards right is due to the Gaussian usetiercalculation. The vertical axis is the
DOS and the horizontal energy is energy. The wodlthe Gussian function is 0.05.

The oscillating curve is the result of the caldalat and the non-oscillating curve
. . 1 . . .
is the analyticalD0OS = 2 N plotted as a comparison. The analytical result is
obtained by the following means:

Since the density of state for free electro (szin)n multiplied by the DOS

calculated by this program, where n is the numibeiroensions, and the factor of 2
accounts for the spin states of an electron. Tlémecal DOS is given in Kittel's

Introduction to Solid Physics book (Kittel, pagel)4

DOS(E) = Z—g (4.1)

where N is number of available states and E ietle¥gy. Equation 4.1 can be written as

dN dk

DOS(E) = Tk dE (4.2)

14



SinceN = 2% k in 1-D, equating the calculated DOS (let’s caMigDOS for now)

and replace n with 1 (for 1-D) the equation loaks |

2(L>1M DOS—ZL\/E (4.2)
) Y - "2nVE '

Under atomic units, m anél are 1 and L in the equation is also 1 since thgtleof

reciprocal lattice constants are all 1. Simplifyiation 4.2, we obtain

MyDOS = VIE? (4.2)

if done analytically. This function is same grapithvthe calculated DOS, with a shift of
500 to the right since the lowest eigenvalue is. G0@se two curves overlap for the most
part indicates that the calculated DOS is indeedlid approximation of the exact DOS
of a 1-D free electron. The inaccuracy of DOS iases as energy goes up, because the
calculation only considered the first ten bandsruter to save calculation time. In this
particular plot, the DOS became very wavy towards lenergies and the oscillation
amplitude decreased by half due to insufficienadsdthigh energy levels.

4.1.2 Testing in 2-D

In 2-D, the analytical result of DOS should be astant for free electrons. The
following result is a plot of calculated value withe same parameter as the 1-D case,
except nowa, = (0, 2m,0) , there are only 7 k-vectors along each b-veetod, plotted

from 1 to 2 in energy:
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Fig 4.1.2 The plot of calculated DOS for 2-D fréectron. The horizontal axis is
energy (in atomic units) and the vertical axishie DOS. There’s no states below 1 due to
the fact that there are too few k-vectors usedédalculation. The DOS becomes
inaccurate past E=2 because there aren’t enougkreiglues beyond that point. Note
that the top of the plot is flat which serves agad indicator. The width of the Gaussian

is 0.05.

In theory, the DOS should be constant for all elstgrhe higher energies were
omitted in this calculation in order to save congpion time, and hence the tail on the
right. The tail on the left is due to the fact tttztre are too few k-points in the mesh in
order to reduce computation time, but resultedigerevalues smaller than 1. The fact
that the plot is constant within its accurate ra(rg# affected by the decay, that is)
indicates that the program is calculating correttity DOS of 2-D free electron states as a

function of E.
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4.1.2 Testing in 3-D

In 3-D, the analytical result of DOS should lodkelia function ofE%. The

following result is a plot of calculated value withe same parameter as the 1-D and 2-D

case, except now; = (0,2m,0) and plotted from 0 to 1 in energy:

4*Pi*Sqri2]*Sart[

]

Calculated DOS

-0.2 0.2 04 0.6 0.8

10

Fig 4.1.2 The plot of calculated DOS for 3-D fréectron. The horizontal axis is

energy (in atomic units) and the vertical axishe DOS. The analytical DOS is also

plotted and labeled.

In theory, the DOS should be proportionah&. The higher energies were

omitted in this calculation in order to save congpioih time. The analytical result is

obtained by the following derivation:

Since the density of state for free electroi2 (szL—n)n multiplied by the DOS

calculated by this program, where n is the numibeiroensions, and the factor of 2

17



accounts for the spin states of an electron. Tagtrgiven by Kittel's Introduction to
Solid Physics book (Kittel, page 140) is in thddaling form

DOS(E) = — (2m>2 E? 41

- 2m2\ h 1)

therefore, equating the calculated DOS (let's itdlyDOS for now) and replace n with

3 (for 3-D) the equation looks like

2(2) mypos = 2 (22) 3 2
21 y C2m2\ h (#:2)
Under atomic units, m anél are 1 and L in the equation is also 1 since DQfig

calculated for the unit volume (and therefore Vsiell). Simplifying equation 4.2, we

obtain

MyDOS = Nl (4.2)

if done analytically, which is plotted in the sagraph with the calculated DOS. These
two curves overlap for the most part indicaing thatcalculated DOS is indeed a valid
approximation of the exact DOS of a 3-D free elatigas. The tail on the left side of the
plot is caused by the broadening Gaussian.

5. CONCLUSION

The tests conducted in part 4 confirm the resuthisf program is a good
approximation of the exact DOS and BS of the syspetified. Knowing that the
program works, one can find the crystal potentjaFburier transforming the step
potential in the Kronig-Penney model with differdaitice parameters, and plot BS and
DOS for each lattice. By specifying confinementsire, two and three dimensions, one
can essentially find the arrangement of latticessihat is desired for a specific electrical
or optical property (which depends largely on D@8 BS). Physically, this models

18



change of the arrangements of nanostructure sughaagum dots (3-D confinement),

guantum wires (2-D confinement) and quantum wéHl® (confinement).
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Appendix 1

Complete Source Code in Mathematica

(*Declare Lattice Constants*)

(*Lattice constants al, a2, and a3*)
Generatelattice[{x10_,y10 ,z10 },{x20_,y20 ,z20 ®¥30 ,y30_,z30_}]:=
Module[{x1=x10, x2=x20, x3=x30, y1=y10, y2=y20, w80, z1=z10, z2=z20, z3=z30},
al={x1,yl,z1};

a2={x2,y2,z2};

a3={x3,y3,z3};

omega=Dot[al,Cross[a2,a3]];

b1=2*Pi*Cross[a2,a3]/omega,;

b2=2*Pi*Cross[a3,al]/omega;

b3=2*Pi*Cross[al,a2]/omega,;

Return[{b1,b2,b3}]];

(*Generate k-mesh BS*)

GeneratekMeshBS[meshO_,{startx0_,starty0_,startf€ndix0_,endy0_,endz0_}]:=

Module[{mesh=meshO0,startx=startx0,starty=startydtztstartz0,endx=endx0,endy=end
y0,endz=endz0},

Clearfi];

klistO={};

For[i=0,i<= mesh-1,i++,

klistO=Append[klistO,{startx,starty,startz}+i/mesff&ndx,endy,endz}-
{startx,starty,startz})]

I;

ReturnlklistO]
]

(*Generate k-mesh DOS¥*)

GeneratekMeshDOS[meshDOS10_,meshDOS20_,meshDOS30 _]:

Module[{meshDOS1=meshDOS10,
meshDOS2=meshD0OS20,meshDOS3=meshDOS30},

Clearfi];

Clear[j];

Clear[K];

klistDOS={};
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For[i=0,i<=meshDOS1-1,i++,

For[j=0,j<=meshDOS2-1,j++,

For[k=0,k<=meshDOS3-1,k++,

klistDOS=Append[klistDOS,(i+0.2)*b1/meshDOS1+(j+PB2/meshDOS2+(k+0.1)*b3/
meshDOS3];

—_— e

(*Generate Gn*)

GenerateAllGn[Gcutoff_]:=

Module[{nmax=Ceiling[Gcutoff/Min[{Sqrt[b1[[1]]*2+b1[2]]"2+b1][[3]]"2],
Sqrt[b2[[1]]*2+b2[[2]]"2+b2[[3]}"2],Sqrt[b3[[1]]"243[[2]}"2+b3[[3]]"2]}]]},

AllGnlist={};

For[n1=-nmax,nl<=nmax,nl++,For[n2=-nmax,n2<=nmax;nEor[n3=-
nmax,n3<=nmax,n3++,AllGnlist=Append[AllGnlist,{n12m3}]]1];

Return[AllGnlist]]

(*Calculate Magnutude of Gn*)
GnMagnitude[{{n1G0_,n2G0_,n3G0_}}]:=
Module[{n1G=n1G0,n2G=n2G0,n3G=n3G0},
rvector=n1G*b1+n2G*b2+n3G*b3;
doMagnitude[{Gx_,Gy_,Gz_}]:=Sqrt[Gx"2+Gy"2+Gz"2];
doMagnitude[rvector](*;

Return[doMagnitude[rvector]];*)

]

(*Make a list of all Gn less than Gcutoff*)

GenerateGn[Gcutoff0_]:=

Module[{Gcutoff=Gcutoff0},

Gnlist=Select[AllGnlist, GnMagnitude[{#}]<=Gcutoff&]

NumOfElements=Length[Gnlist];(*NumOfElements disgahe total number of
elements in the list Gnlist*)

Return[Gnlist]

"There are "NumOfElements " elements in the list."

]

(*Geneate HO Matrix*)
GenerateHOMatrix[Gnlist0_]:=
Module[{Gnlist=Gnlist0},
For[i=1,ix=  NumOfElements,i++,
For[j=1,)<= NumOfElements,j++,
HO[i,j]J=VofG[Gnlist[[i]]-Gnlist[[j]]];
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I
]

(*Diagonalize H Matrix for DOS*)

EpsilonDOS[lambda0_,k0_J:=

Module[{lambda=lambda0,k=k0},

GenerateHOMatrix[Gnlist];

For[i=1,i<= Length[Gnlist] ,i++,

HO[i,i]=HO[i,i]+Shift+Dot[(Gnlist[[i]] +klistDOS[[K] 1),(Gnlist[[i]]+klistDOS[[K]])]/2

MatrixH={};
Forl[i=1,i<=Length[Gnlist],i++,
HOi=(};

For[j=1,j<=Length[Gnlist],j++,

HOi=Append[HOi,HO[i,j]];

I;
atrixH=N[Append[MatrixH,HOi]]

I;

(*Print[MatrixHO//MatrixForm];*)

(*For the 1st 20 bands*)

EpsilonValuesDOS=Sort[Eigenvalues[MatrixH, -Numd&ands]-Shift];

Return[EpsilonValuesDOS[[lambdal]]]

]

(*Assemble all Eigenvalues*)

(*Calculate DOSY)

Clear[DOS];
Delta[x_,sigma_]:=(1/Sqrt[2*Pi*sigma”2])*Exp[-x*2Z{sigma’2)]
DOS[e00_,sigma0_]:=

Module[{e0=e00, sigma=sigma0},

sum=0.;

Clear[K];

For[k=1,k<=Length[TotalEigenValuesDOS],k++,

Iff Abs[eO-TotalEigenValuesDOSJ[[k]]]<6*sigma,
sum=sum+Delta[(e0-TotalEigenValuesDOSJ[K]]),sigma];

%;

eturn[DOS0=(1/Length[klistDOS])*sum];
I;

(*Plot DOS*)

PlotDOS[minEnergy0_,maxEnergy0 _,interval0_, $signa0

Module[{minEnergy=minEnergy0,maxEnergy=maxEnergy&ival=intervalO,
$sigma=$sigma0},

Clear[K];
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TotalEigenValuesDOS={};

For[k=1,k<= Length[klistDOS],k++,

EpsilonDOS[1,K];

If[Element[k/10,Integers],Print[K]];
TotalEigenValuesDOS=Join[TotalEigenValuesDOS,EpaflaluesDOS]
I;
rint[Plot[DOS[x,$sigma],{x,minEnergy,interval,margrgys}]]

(*Diagonalize H-Matrix for BS*)

EpsilonBS[lambda0_,kO_, nofband0_]:=
Module[{lambda=lambda0,k=k0,nofband=nofband0},
GenerateHOMatrix[Gnlist];

For[i=1,i<= Length[Gnlist] ,i++,
HO[i,i]=HO[i,i]+Shift+Dot[(Gnlist[[i]] +klistBS[[K]] ),(Gnlist[[i]]+klistBS[[K]])]/2

MatrixH={};

For[i=1,i<=Length[Gnlist],i++,

HOi={};

For[j=1,j<=Length[Gnlist],j++,

HOi=Append[HOi,HO[i,j]];

I;
atrixH=N[Append[MatrixH,HOi]]

I;

(*Print[MatrixHO//MatrixForm];*)

(*For the 1st 20 bands*)

EpsilonValuesBS=Sort[Eigenvalues[MatrixH,-Numberaftls]];

Return[EpsilonValuesBS|[[lambda]]-Shift]

]

(*Plot BS*)

PlotBS[NumOfBands0_]:=

Module[{NumOfBands=NumOfBands0},

EpsilonBS[1,1,NumOfBands];

ListLinePlot[Table[{k,EpsilonBS[m,k,NumOfBands]},{m,NumOfBands},{k,0,Length[
klistBS]}],PlotRange->Automatic(*{50000/2,50013/2}f

I;

(*Initialization*)

Initialize[{$x10_,$y10 ,$z10_},{$x20_,$y20 ,$z20{$x30_,$y30_,$z30_},$meshBS0O
_,$meshDOS10_,$meshD0OS20_,$meshDOS30_,$Gcutoff@odtele[{$x1=$x10,$
y1=%$y10,$z1=%$210,$x2=%$x20,$y2=3$y20,$22=$220,$x 363 =$y30,$23=%$230,$
meshBS=$meshBS0,$meshDOS1=$meshD0OS10,$meshDOSEID®BRR0,$mesh
DOS3=$meshDOS30,$Gcutoff=$Gcutoff0},

GenerateLattice[{$x1,$y1,$z1},{$x2,$y2,$22},{$x3,3y$z3}];
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klistBS={};
klistBS1=GeneratekMeshBS[$meshBS,{0,0,0},b1/2];
klistBS2=GeneratekMeshBS[$meshBS,b1/2 ,(b1+b2)/2];
klistBS3=GeneratekMeshBS[$meshBS,(b1+b2)/2 ,{0]0,0}
klistBS=Join[klistBS1,klistBS2,klistBS3];

GeneratekMeshDOS[$meshDOS1,$meshDOS2,$meshDOS3];
GenerateAllGn[$Gcutoff];
GenerateGn[$Gcutoff];

Clear[VofG];

d=2*Pi/5*Sqrt[Dot[al,al]];

[=d/5;

(*VofG[{n1_,n2_,n3_}]:=0.2 Exp[-(n1 n1+n2 n2 +n3 }I3)
(*VofG[{n1_,n2_,n3_}]:=If[n2==0&&n3==0,
Return[Sin[(n1+0.00001)*d]/(n1+0.00001)*Exp[-n1*n1H2]];,
Returnl[0];

1%)

(*VofG[{n1_,n2_,n3_}]:=Cos[n1];*)
VofG[{n1_,n2_,n3 }]:=0;

Clear[Shift];
Shift=5(Dot[b1,b1]+Dot[b2,b2]+Dot[b3,b3])/2;
NumberofBands=Min[Length[Gnlist],10];

EpsilonDOS[1,1];
I;
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