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ABSTRACT 

 
 Objective: write a program in Mathematica to calculate Density of States (DOS) 

and Band Structure (BS) of a crystal structure when given lattice constants and periodic 

potential in real space. This program provides a concise and simple method of calculating 

DOS and BS, and therefore provides a basis for numerical optimization of various 

properties of a nanostructured system. The program is tested under known conditions and 

the results closely match the known result.  

1. INTRODUCTION 

Energy consumption has become an important issue lately, with global shortage 

on commonly used fossil fuel energy sources such as oil, natural gas and coal. 

Unfortunately, a very large percentage of all energy consumed relies on fossil fuels. The 

current efficiency of converting fossil fuel to usable forms of energy is in the 30% to 50% 

range for thermal power plants, and lowers for internal combustion engines, with the 

majority of energy lost in terms of waste heat. In theory, the waste heat can be recycled 

and generate electrical energy via Thermoelectric Effect.   

Thermoelectric Effect converts heat directly into electricity. One of the main 

components of thermoelectric effect, the Seebeck effect, is the discovery that when two 

ends of a semiconductor are exposed to a temperature difference, there’s a voltage 

difference generated across the semiconductor material. The magnitude of electric 

potential created by a temperature differential via Seebeck effect is measured by Seebeck 

coefficient (S), also known as thermopower. The Seebeck coefficient has units of V/K, 

and in practice a material with several 100µV/K is considered a good thermoelectric 
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material. Microscopically, Seebeck coefficient depends largely on the Density of States 

of a semiconductor material.  

Photonic crystal is another application of band gap engineering, which essentially 

changes DOS and BS to create desired optical properties of a crystal. When a beam of 

photons incident on a crystal, if the incident photon’s energy is roughly the same as the 

bad gap, it gets absorbed by exciting an electron. On the other hand, if the photon’s 

energy is nowhere near the energy of the gap (from the highest energy of the lower band 

to the lowest energy of the higher band), the photon gets scattered off. Therefore, all 

absorption of light happens near the band gap energy range. By changing the BS of a 

crystal (create gaps at degenerate energies, adjust height of the gap, etc) we can 

effectively change the absorption energy of the crystal and therefore its optical properties. 

In theory, the band gap acts as a “gate keeper” to allow either absorption or scattering of 

incident photons. Both photonic crystals and thermoelectric nanostructure can be 

modeled by the Kronig-Penney potential and the BS and DOS can be calculated in order 

to investigate in the properties of the materials.  

However, analytical calculations of BS and DOS are only possible for very simple 

cases such as free electron. For purposes such as evaluating the Kronig-Penney model in 

one, two and three dimensions, the calculation must be done numerically. The objective 

of this project is to develop a program in Mathematica to calculate numerically the 

Density of States (DOS) and Band Structure (BS) of a crystal with given lattice 

parameters and potential.  

 



4 
 

2. CODING IN MATHEMATICA 

2.1 Defining the lattice 

The procedure of this project mainly contains a program that calculates the DOS 

for an arbitrary crystal with an arbitrary but known potential. The potential of the 

quantum dots are given, and the simulation is done assuming there's no electron-electron 

interaction. Appendix 1 is a complete code of the program written in Mathematica 

version 7.  

The program starts by constructing lattice sites represented by points with real 

translation vectors ��, �� and ��. Using the following equations  

���� � ��� 	 3
��� · ��� 	 ���

 ,   ���� � ��� 	 ���
��� · ��� 	 ���

 ,   ���� � ��� 	 ���
��� · ��� 	 ��

                 �2.1� 

the basis of reciprocal lattice vectors ��, �� and �� can be calculated and a list of 

vectors  

�� � 2������ � ���� � �����                                                  �2.2� 

 

can be generated using integers ��, �� and ��.  �� is linear combinations of reciprocal 

lattice basis vectors. In this case, a list of �� vectors can be generated to contain all G-

vectors from one point to another in the lattice. To make the calculation possible, a finite 

set of G vectors must be defined. In the case of this project, a Gcutoff value is defined to 

be the maximum amplitude of all G vectors. If a G vector has magnitude longer than 

Gcutoff, then it is not considered in the calculation.  

 In order to realize the elimination process described above, first a maximum value 

of n (����) must be defined by dividing Gcutoff by the smallest reciprocal lattice vector, 

then a list of triplets of n values are generated from ����� to ���� for each of ��, �� 
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and ��. This list of integer triplets have the form of (��, ��, ��), and the dot product of 

(��, ��, ��) and 2Pi*(��, ��, ��) constructs a list (named AllGnlist) of all G vectors to 

be considered. The subroutine “GnMagnitude” calls for (��, ��, ��) and returns the 

magnitude of the corresponding G vector. The command “Select” in Mathematica 7  

is used in combination with the “GnMagnitude” subroutine to “scan” through all 

elements in AllGnlist and discard those with magnitudes larger than Gcutoff. The list of 

surviving elements is named Gnlist.  

 

2.2 The Hamiltonian Matrix  

Once we obtain a finite list of G-vectors, a Hamiltonian matrix can be formed in 

order to calculate the dispersion relation which determines the energy of an electron in 

the periodic potential. The Hamiltonian of an electron has two components: potential 

energy and kinetic energy, so the Hamiltonian matrix is the sum of two matrices: the 

potential energy matrix and the kinetic energy matrix.  

The potential energy matrix is simply found by assuming the periodic potential of 

the lattice in real space is given. A Fourier Series of the potential in real space will yield 

the potential in momentum space, ��, as a function of G-vectors. The terms in the 

potential energy matrix is then obtained by ����� � � � where ! is the row index and 

" is the column index. 

For the kinetic energy matrix, we must briefly introduce Bloch’s theorem which 

exploits the periodic nature of the potential. 

2.2.1 Bloch’s Theorem 

Define a periodic potential,  



6 
 

��#� � ��# � $�                                                    �2.3� 

Due to the translational invariance of the potential, Bloch theorem states that 

 %&�# � $� � '�&·(%&�#�                                               �2.4� 

where states are labeled by corresponding wave vectors k. For the purpose of this 

project, the number of wave vectors determines the number of data points taken into 

consideration by the numerical calculation.  

With the help of Bloch’s theorem, we can write the kinetic energy matrix for each 

k as  

���� � *����

2+  

                                                           �2.5� 

Only the diagonal terms of the kinetic energy matrix are non-zero. Therefore, the 

Hamiltonian matrix is the potential energy matrix with its diagonal terms added by the 

corresponding diagonal terms from the kinetic matrix. In the program, H0 represents the 

potential energy matrix, and becomes the Hamiltonian matrix later after adding the 

kinetic energy terms onto all of its diagonal elements. In order to construct the 

Hamiltonian matrix, a list of k-vectors is needed.  

2.3 Calculate BS 

Band Structure (BS) can be obtained by diagonalization of the Hamiltonian 

matrix for each k-vector, since the eigenvalues (energies) change as a function of k, and 

are different along different directions in k space. Traditionally, BS is plotted along axes 

of symmetry in a closed loop. For example, the BS for a square lattice in 2-D is plotted 

along the path of a – b – c – a (Fig. 2.2.1a) 
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Fig. 2.3a, The direction of k-vectors moving along all axes of symmetry, with 

vectosr ������- � ./����-
� , �0����- � .1����-

�  ��2 0�����- � �./����-3./����-�
�   

The subroutine “GeneratekMeshBS” creates a list with a specified population of 

k-vectors along a path defined by a starting point and an ending point. Each path yields a 

list of k-vectors, and all lists are joined together to form a single linear list of k-vectors. 

This list of k-vectors are then used to construct the Hamiltonian matrix which when 

diagnoalized, yields the eigenvalues which are energies at the particular k point. The 

lowest energy band can be found be grouping together the lowest energies, and second 

lowest band is formed by the second lowest group of energies. A plot of all energy points 

shows clearly the band structure of the crystal defined in the initialization step. The 

routine is written in 3-D space but can be easily reduced to 2-D and 1-D by changing the 

length of lattice constants and confining the path of k-vectors in two or one dimension.  

 

2.4 Calculate the Density of States (DOS) 
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DOS as a function of E can be calculated by doing a sum of all bands over all 

energies of k-vectors, using the following equation 

456�7� � 1
8&

9 :�7 � 7&�
&

                                           �2.6� 

where 8& is the total number of k-vectors covering the FBZ. Simply using the delta 

function gives a histogram-like count for the DOS, instead of yielding a function of E. 

Since all electrical/thermal properties of solids depends on DOS as a function of E, an 

simple histogram is not as useful. By replacing the delta function, :�<�, with the 

following Gaussian distribution 

:�<� � '=�/
�>/?

√2�A�                                                     �2.7� 

where  

< � 7 � 7&C 

a dependence of energy is introduced. 7&C is the λth band energy of state labeled by k. To 

reduce calculation time, and due to the fact that data points in the tail of the Gaussian 

distribution is much less important than the ones in the middle, any point that falls 

outside of 6A (can be defined to any value as desired by user) of the Gaussian function 

are neglected from the calculation.  

 A different set of k-vectors are needed for calculation of DOS. This new list of k-

vectors must cover all k-points within the First Brillouin Zone (FBZ), instead of merely 

running along the reciprocal lattice vectors. The subroutine GeneratekMeshDOS creates a 

list of k-vectors that fills the FBZ. Due to the translational invariance and symmetry of 

the system, DOS found within the FBZ is the same as the DOS found within a reciprocal 

lattice primitive cell. Therefore, to simply calculation, a mesh of k-vectors is generated 
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within a reciprocal lattice primitive cell. GeneratekMeshDOS subroutine divides 

reciprocal lattice vectors into user-specified number of segments, then creates integer 

multiples of each segment in all three directions and thus generate a “cube” array of 

vectors, but arranged in a linear list. This list of k-vectors is then used in construction of 

Hamiltonian matrix for calculating DOS. 

 

Fig.2.3b, k-mesh is generated within the primitive cell, with same area and thus same 

number of k-points as FBZ.  

Energies at each k-point can be found by diagonalizing the Hamiltonian matrix. 

Taking the first several bands (again, user-specified) and summed over all k-vectors 

using the method described above, a DOS can be assembled as function of E. Plotting 

DOS using Mathematica’s built in plot command can be time consuming, due to large 

number of calculations involved. By using the “PlotDOS” subroutine, which takes 

number of points considered and width of the Gaussian function as inputs, the DOS is 

only calculated for a number equally spaced energy points and thus the calculation time is 

greatly reduced.  
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3. HOW TO USE THE PROGRAM 

1. Open the file “Main.nb” with Mathematica 

2. Evaluate the thread defining all subroutines 

3. In a new Mathematica notebook file, type “Initialize” command, input 

argument with crystal parameters in the following format: 

{ D��� ,  ��E, ��FG, D��� , ��E , ��FG, D���, ��E, ��FG, 

8H+�'# IJ * � K'0LI#M �NI�O '�0P Q�LP JI# R6, 
8H+�'# IJ * � K'0LI#M JI# 456 !� �1 2!#'0L!I�, 
8H+�'# IJ * � K'0LI#M JI# 456 !� �2 2!#'0L!I�, 
8H+�'# IJ * � K'0LI#M JI# 456 !� �3 2!#'0L!I�, 
SHL IJJ JI# � } 

This command initiates the k-mesh arrays and the Fourier components of the 

potential.  

4. The command “PlotBS[n]” plots the first n bands of energy. The vertical axis 

is energy, and the horizontal axis is merely a number count of k-vector, with 

no units (for example, 5 means the 5th k-vector in the list of “klistBS”).  

5. The command “PlotDOS[Emin,Emax, energy step, sigma]” plots the DOS 

using the specified interval with energy between Emin and Emax, energy step 

defines the interval between sampling points along the x-axis, and the width 

of Gaussian curve being sigma. The vertical axis is number of states and the 

horizontal axis is energy. By default the first 10 bands are considered in the 

calculation. If there are less than 10 bands, then all the bands are considered. 

6. Units: This program is written with atomic units in mind (ℏ = m = e = 1) 
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The program is written in version 7.0 and therefore may not be compatible with 

older versions due to slightly different syntax and formatting rules.  

 

4. TEST WITH KNOWN EXAMPLES  

In order to test the functionality of the program, I ran the following tests: 
 
4.1 Testing BS 

Taking a square lattice: �� � �2�, 0, 0�, �� � �0, 2�, 0�, �� � �0, 0,2�/100� 

which is very small compared to �� and ��, to ensure �� is (1,0,0), and b2 is (0,1,0) and 

b3=100 is very large and therefore even the smallest multiple of b3 is still omitted by G-

cutoff defined to be 2. There are 13 G-vectors, which constructs the following 13 by 13 

matrix: 

 

1.99 0 0 0 0 0 0 0 0 0 0 0 0 

0 0.99 0 0 0 0 0 0 0 0 0 0 0 

0 0 0.5 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 1.99 0 0 0 0 0 0 0 0 

0 0 0 0 0 0.5 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.51 0 0 0 0 0 

0 0 0 0 0 0 0 0 2.01 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0.51 0 0 

0 0 0 0 0 0 0 0 0 0 0 1.01 0 

0 0 0 0 0 0 0 0 0 0 0 0 2.01 

 
Table 4.1 The Hamiltonian Matrix for free electron at k=(0,0,0) 

 
and the calculated BS is as follows 
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Fig 4.1a. The BS of a two dimensional crystal lattice under zero potential (2-D 

free electron) along the path shown in Fig. 2.3a.  

If we put a potential in the lattice, thus add non-zero off diagonal elements to the 

matrix, then we should see the splitting of bands. The potential � � 0.2'�/
 adds non-

zero off diagonal terms to the matrix, and should cause the degenerate bands to split. The 

following figure confirms the result.  
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Fig 4.1b. Left: Band splitting caused by non-zero diagonal terms under influence of a 

potential. The band splitting is visible when compared with the plot with zero-potential. 

Right: Same plot with zero-potential as comparison.  

 

 
4.1 Testing DOS 

The DOS of a free electron in one, two and three dimensions are tested using the 

program and compared with the analytical result.  

4.1.1 Testing in 1-D 

Taking a square lattice: �� � �2�, 0, 0�, �� � �0, 2�/100, 0�, �� �
�0, 0,2�/100� which is very small compared to �� and ��, to ensure �� is (1,0,0), and 

b2 is (0,1,0) and b3 is very large and therefore even the smallest multiple of b3 is still 

omitted by G-cutoff defined to be 4.5. Under no potential, with 25 k-vectors along b1 

direction and 1 k-vector along b2 and b3 direction, the one dimensional DOS of a free 

electron is plotted in the following figure: 
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Fig. 4.1.1 Calculated DOS of 1-D free electron super imposed with √27=1
/ function. The 

wave towards right is due to the Gaussian used in the calculation. The vertical axis is the 

DOS and the horizontal energy is energy. The width of the Gussian function is 0.05.  

 
The oscillating curve is the result of the calculation, and the non-oscillating curve 

is the analytical 456 � √2 �
√W=XYY plotted as a comparison. The analytical result is 

obtained by the following means:  

Since the density of state for free electron is 2 Z [
�\]�

 multiplied by the DOS 

calculated by this program, where n is the number of dimensions, and the factor of 2 

accounts for the spin states of an electron. The analytical DOS is given in Kittel’s 

Introduction to Solid Physics book (Kittel, page 141): 

456�7� � 28
27                                                        �4.1� 

where N is number of available states and E is the energy. Equation 4.1 can be written as  

456�7� � 28
2*

2*
27                                                      �4.2� 

502 504 506 508 510

2

4

6

8

10

12
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Since 8 � 2 [
�\  * in 1-D, equating the calculated DOS (let’s call it MyDOS for now) 

and replace n with 1 (for 1-D) the equation looks like  

2 ^ _
2�`

�
MyDOS � 2 _

2�
√2
√7                                 �4.2� 

Under atomic units, m and ℏ are 1 and L in the equation is also 1 since the length of 

reciprocal lattice constants are all 1. Simplify equation 4.2, we obtain  

MyDOS � √27=�
�                                                �4.2� 

if done analytically. This function is same graph with the calculated DOS, with a shift of 

500 to the right since the lowest eigenvalue is 500. These two curves overlap for the most 

part indicates that the calculated DOS is indeed a valid approximation of the exact DOS 

of a 1-D free electron. The inaccuracy of DOS increases as energy goes up, because the 

calculation only considered the first ten bands in order to save calculation time. In this 

particular plot, the DOS became very wavy towards high energies and the oscillation 

amplitude decreased by half due to insufficient data at high energy levels.  

4.1.2 Testing in 2-D 

In 2-D, the analytical result of DOS should be a constant for free electrons. The 

following result is a plot of calculated value with the same parameter as the 1-D case, 

except now �� � �0, 2�, 0� , there are only 7 k-vectors along each b-vector, and plotted 

from 1 to 2 in energy: 
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Fig 4.1.2 The plot of calculated DOS for 2-D free electron. The horizontal axis is 

energy (in atomic units) and the vertical axis is the DOS. There’s no states below 1 due to 

the fact that there are too few k-vectors used in the calculation. The DOS becomes 

inaccurate past E=2 because there aren’t enough eigenvalues beyond that point. Note 

that the top of the plot is flat which serves as a good indicator. The width of the Gaussian 

is 0.05.  

In theory, the DOS should be constant for all energies. The higher energies were 

omitted in this calculation in order to save computation time, and hence the tail on the 

right. The tail on the left is due to the fact that there are too few k-points in the mesh in 

order to reduce computation time, but resulted no eigenvalues smaller than 1. The fact 

that the plot is constant within its accurate range (not affected by the decay, that is) 

indicates that the program is calculating correctly the DOS of 2-D free electron states as a 

function of E. 

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8
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4.1.2 Testing in 3-D 

In 3-D, the analytical result of DOS should look like a function of E1
/. The 

following result is a plot of calculated value with the same parameter as the 1-D and 2-D 

case, except now �� � �0, 2�, 0� and plotted from 0 to 1 in energy: 

 

Fig 4.1.2 The plot of calculated DOS for 3-D free electron. The horizontal axis is 

energy (in atomic units) and the vertical axis is the DOS. The analytical DOS is also 

plotted and labeled.  

In theory, the DOS should be proportional to √7. The higher energies were 

omitted in this calculation in order to save computation time. The analytical result is 

obtained by the following derivation: 

Since the density of state for free electron is 2 Z [
�\]�

 multiplied by the DOS 

calculated by this program, where n is the number of dimensions, and the factor of 2 

4*Pi*Sqrt[2]*Sqrt[x]

Calculated DOS

-0.2 0.2 0.4 0.6 0.8 1.0

5

10

15
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accounts for the spin states of an electron. The result given by Kittel’s Introduction to 

Solid Physics book (Kittel, page 140) is in the following form 

456�7� � �
2�� ^2+

ℏ `
�

7�
�                                         �4.1� 

therefore, equating the calculated DOS (let’s call it MyDOS for now) and replace n with 

3 (for 3-D) the equation looks like  

2 ^ _
2�`

�
MyDOS � �

2�� ^2+
ℏ `

�
7�

�                                 �4.2� 

Under atomic units, m and ℏ are 1 and L in the equation is also 1 since DOS is only 

calculated for the unit volume (and therefore V=1 as well). Simplifying equation 4.2, we 

obtain  

MyDOS � π4√27�
�                                                �4.2� 

if done analytically, which is plotted in the same graph with the calculated DOS. These 

two curves overlap for the most part indicaing that the calculated DOS is indeed a valid 

approximation of the exact DOS of a 3-D free electron gas. The tail on the left side of the 

plot is caused by the broadening Gaussian.  

5. CONCLUSION 

The tests conducted in part 4 confirm the result of this program is a good 

approximation of the exact DOS and BS of the system specified. Knowing that the 

program works, one can find the crystal potential by Fourier transforming the step 

potential in the Kronig-Penney model with different lattice parameters, and plot BS and 

DOS for each lattice. By specifying confinements in one, two and three dimensions, one 

can essentially find the arrangement of lattice sites that is desired for a specific electrical 

or optical property (which depends largely on DOS and BS). Physically, this models 
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change of the arrangements of nanostructure such as quantum dots (3-D confinement), 

quantum wires (2-D confinement) and quantum wells (1-D confinement).  
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Appendix 1 

Complete Source Code in Mathematica 
(*Declare Lattice Constants*) 
(*Lattice constants a1, a2, and a3*) 
GenerateLattice[{x10_,y10_,z10_},{x20_,y20_,z20_},{x30_,y30_,z30_}]:= 
Module[{x1=x10, x2=x20, x3=x30, y1=y10, y2=y20, y3=y30, z1=z10, z2=z20, z3=z30}, 
a1={x1,y1,z1}; 
a2={x2,y2,z2}; 
a3={x3,y3,z3}; 
omega=Dot[a1,Cross[a2,a3]]; 
b1=2*Pi*Cross[a2,a3]/omega; 
b2=2*Pi*Cross[a3,a1]/omega; 
b3=2*Pi*Cross[a1,a2]/omega; 
Return[{b1,b2,b3}]]; 
 
(*Generate k-mesh BS*) 
GeneratekMeshBS[mesh0_,{startx0_,starty0_,startz0_},{endx0_,endy0_,endz0_}]:= 
Module[{mesh=mesh0,startx=startx0,starty=starty0,startz=startz0,endx=endx0,endy=end

y0,endz=endz0}, 
Clear[i]; 
klist0={}; 
For[i=0,i<= mesh-1,i++, 
klist0=Append[klist0,{startx,starty,startz}+i/mesh*({endx,endy,endz}-

{startx,starty,startz})] 
]; 
Return[klist0] 
] 
 
 
 
 
(*Generate k-mesh DOS*) 
GeneratekMeshDOS[meshDOS10_,meshDOS20_,meshDOS30_]:= 
Module[{meshDOS1=meshDOS10, 

meshDOS2=meshDOS20,meshDOS3=meshDOS30}, 
Clear[i]; 
Clear[j]; 
Clear[k]; 
klistDOS={}; 
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For[i=0,i<=meshDOS1-1,i++, 
For[j=0,j<=meshDOS2-1,j++, 
For[k=0,k<=meshDOS3-1,k++, 
klistDOS=Append[klistDOS,(i+0.2)*b1/meshDOS1+(j+0.3)*b2/meshDOS2+(k+0.1)*b3/

meshDOS3]; 
] 
] 
] 
] 
 
(*Generate Gn*) 
GenerateAllGn[Gcutoff_]:= 
Module[{nmax=Ceiling[Gcutoff/Min[{Sqrt[b1[[1]]^2+b1[[2]]^2+b1[[3]]^2],    

Sqrt[b2[[1]]^2+b2[[2]]^2+b2[[3]]^2],Sqrt[b3[[1]]^2+b3[[2]]^2+b3[[3]]^2]}]]}, 
AllGnlist={}; 
For[n1=-nmax,n1<=nmax,n1++,For[n2=-nmax,n2<=nmax,n2++,For[n3=-

nmax,n3<=nmax,n3++,AllGnlist=Append[AllGnlist,{n1,n2,n3}]]]]; 
Return[AllGnlist]] 
 
 
(*Calculate Magnutude of Gn*) 
GnMagnitude[{{n1G0_,n2G0_,n3G0_}}]:= 
Module[{n1G=n1G0,n2G=n2G0,n3G=n3G0}, 
rvector=n1G*b1+n2G*b2+n3G*b3; 
doMagnitude[{Gx_,Gy_,Gz_}]:=Sqrt[Gx^2+Gy^2+Gz^2]; 
doMagnitude[rvector](*; 
Return[doMagnitude[rvector]];*) 
] 
 
(*Make a list of all Gn less than Gcutoff*) 
GenerateGn[Gcutoff0_]:= 
Module[{Gcutoff=Gcutoff0}, 
Gnlist=Select[AllGnlist,GnMagnitude[{#}]<=Gcutoff&]; 
NumOfElements=Length[Gnlist];(*NumOfElements displays the total number of 

elements in the list Gnlist*) 
Return[Gnlist] 
"There are "NumOfElements " elements in the list." 
] 
 
(*Geneate H0 Matrix*) 
GenerateH0Matrix[Gnlist0_]:= 
Module[{Gnlist=Gnlist0}, 
For[i=1,i<=   NumOfElements,i++, 
For[j=1,j<=   NumOfElements,j++, 
H0[i,j]=VofG[Gnlist[[i]]-Gnlist[[j]]]; 
]; 
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]; 
] 
 
(*Diagonalize H Matrix for DOS*) 
EpsilonDOS[lambda0_,k0_]:= 
Module[{lambda=lambda0,k=k0}, 
GenerateH0Matrix[Gnlist]; 
For[i=1,i<= Length[Gnlist] ,i++, 
H0[i,i]=H0[i,i]+Shift+Dot[(Gnlist[[i]]+klistDOS[[k] ]),(Gnlist[[i]]+klistDOS[[k]])]/2 
]; 
MatrixH={}; 
For[i=1,i<=Length[Gnlist],i++, 
H0i={}; 
For[j=1,j<=Length[Gnlist],j++, 
H0i=Append[H0i,H0[i,j]]; 
]; 
MatrixH=N[Append[MatrixH,H0i]] 
]; 
(*Print[MatrixH0//MatrixForm];*) 
(*For the 1st 20 bands*) 
EpsilonValuesDOS=Sort[Eigenvalues[MatrixH, -NumberofBands]-Shift]; 
Return[EpsilonValuesDOS[[lambda]]] 
] 
 
(*Assemble all Eigenvalues*) 
 
(*Calculate DOS*) 
Clear[DOS]; 
Delta[x_,sigma_]:=(1/Sqrt[2*Pi*sigma^2])*Exp[-x^2/(2*sigma^2)] 
DOS[e00_,sigma0_]:= 
Module[{e0=e00, sigma=sigma0}, 
sum=0.; 
Clear[k]; 
For[k=1,k<=Length[TotalEigenValuesDOS],k++, 
If[  Abs[e0-TotalEigenValuesDOS[[k]]]<6*sigma, 
sum=sum+Delta[(e0-TotalEigenValuesDOS[[k]]),sigma]; 
]; 
]; 
Return[DOS0=(1/Length[klistDOS])*sum]; 
]; 
 
(*Plot DOS*) 
PlotDOS[minEnergy0_,maxEnergy0_,interval0_, $sigma0_]:= 
Module[{minEnergy=minEnergy0,maxEnergy=maxEnergy0,interval=interval0, 

$sigma=$sigma0}, 
Clear[k]; 
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TotalEigenValuesDOS={}; 
For[k=1,k<= Length[klistDOS],k++, 
EpsilonDOS[1,k]; 
If[Element[k/10,Integers],Print[k]]; 
TotalEigenValuesDOS=Join[TotalEigenValuesDOS,EpsilonValuesDOS] 
]; 
Print[Plot[DOS[x,$sigma],{x,minEnergy,interval,maxEnergy}]] 
]; 
 
(*Diagonalize H-Matrix for BS*) 
EpsilonBS[lambda0_,k0_, nofband0_]:= 
Module[{lambda=lambda0,k=k0,nofband=nofband0}, 
GenerateH0Matrix[Gnlist]; 
For[i=1,i<= Length[Gnlist] ,i++, 
H0[i,i]=H0[i,i]+Shift+Dot[(Gnlist[[i]]+klistBS[[k]] ),(Gnlist[[i]]+klistBS[[k]])]/2 
]; 
MatrixH={}; 
For[i=1,i<=Length[Gnlist],i++, 
H0i={}; 
For[j=1,j<=Length[Gnlist],j++, 
H0i=Append[H0i,H0[i,j]]; 
]; 
MatrixH=N[Append[MatrixH,H0i]] 
]; 
(*Print[MatrixH0//MatrixForm];*) 
(*For the 1st 20 bands*) 
EpsilonValuesBS=Sort[Eigenvalues[MatrixH,-NumberofBands]]; 
Return[EpsilonValuesBS[[lambda]]-Shift] 
] 
 
(*Plot BS*) 
PlotBS[NumOfBands0_]:= 
Module[{NumOfBands=NumOfBands0}, 
EpsilonBS[1,1,NumOfBands]; 
ListLinePlot[Table[{k,EpsilonBS[m,k,NumOfBands]},{m,0,NumOfBands},{k,0,Length[

klistBS]}],PlotRange->Automatic(*{50000/2,50013/2}*)] 
]; 
 
 
(*Initialization*) 
Initialize[{$x10_,$y10_,$z10_},{$x20_,$y20_,$z20_},{$x30_,$y30_,$z30_},$meshBS0

_,$meshDOS10_,$meshDOS20_,$meshDOS30_,$Gcutoff0_]:=Module[{$x1=$x10,$
y1=$y10,$z1=$z10,$x2=$x20,$y2=$y20,$z2=$z20,$x3=$x30,$y3=$y30,$z3=$z30,$
meshBS=$meshBS0,$meshDOS1=$meshDOS10,$meshDOS2=$meshDOS20,$mesh
DOS3=$meshDOS30,$Gcutoff=$Gcutoff0}, 

GenerateLattice[{$x1,$y1,$z1},{$x2,$y2,$z2},{$x3,$y3,$z3}]; 
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klistBS={}; 
klistBS1=GeneratekMeshBS[$meshBS,{0,0,0},b1/2]; 
klistBS2=GeneratekMeshBS[$meshBS,b1/2 ,(b1+b2)/2]; 
klistBS3=GeneratekMeshBS[$meshBS,(b1+b2)/2 ,{0,0,0}]; 
klistBS=Join[klistBS1,klistBS2,klistBS3]; 
 
 
GeneratekMeshDOS[$meshDOS1,$meshDOS2,$meshDOS3]; 
GenerateAllGn[$Gcutoff]; 
GenerateGn[$Gcutoff]; 
 
Clear[VofG]; 
d=2*Pi/5*Sqrt[Dot[a1,a1]]; 
l=d/5; 
(*VofG[{n1_,n2_,n3_}]:=0.2 Exp[-(n1 n1+n2 n2 +n3 n3)];*) 
(*VofG[{n1_,n2_,n3_}]:=If[n2==0&&n3==0, 
Return[Sin[(n1+0.00001)*d]/(n1+0.00001)*Exp[-n1*n1*l*l/2]];, 
Return[0]; 
];*) 
(*VofG[{n1_,n2_,n3_}]:=Cos[n1];*) 
VofG[{n1_,n2_,n3_}]:=0; 
 
Clear[Shift]; 
Shift=5(Dot[b1,b1]+Dot[b2,b2]+Dot[b3,b3])/2; 
NumberofBands=Min[Length[Gnlist],10]; 
 
EpsilonDOS[1,1]; 
]; 

 
 

 


