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Abstract

Quantifying Stellar Substructure in the Via Lactea N-body Cosmological Simulation

of the Milky Way Dark Halo

by

Michael A. Obranovich

We begin by implementing a star formation prescription described by Bullock et al. [4] to model

the Stellar Halo of the Milky Way using the Via Lactea I [6] and II [7] simulations. By building the

Stellar Halo from the accretion of subunits (subhalos) we can predict the amount of substructure

in the Milky Way for comparison with observations. We quantify the degree of “clumpiness” by

finding variations in surface brightness within pencil beams of various angular sizes. We find that

the stellar halo exhibits the largest amount of clumpiness on small scales of beam sizes (1 − 2◦ and

2 − 4◦) and is rather smooth on larger scales (4 − 8◦ and 6 − 14◦).
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1 Introduction

The model of our universe widely accepted today is rather young considering the time-line

of modern science beginning with Galileo and Newton. The structure of the universe was only

physically explained by Einstein’s theory of Gravity, General Relativity (GR). General Relativity

describes the geodesic of space-time in terms of a distribution of energy density. Where energy

density is negligible, or zero, then space-time is flat and the geodesic is given by the usual one used

in special relativity,

ds2 = −c2dt2 + dr2 + r2dΩ2[5]. (1.1)

Where dΩ2 = dθ2 +sin2(θ)dφ2. This metric is altered in GR to take into account curved space-time

as

ds2 = gµνdxµdxν .[5] (1.2)

Where gµν is the metric tensor. If gµν =

(

−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

then Eq.(1.1) is recovered. There are many

different geometries that the metric tensor can describe but we will only be interested in one, the

Robertson-Walker metric, which will be discussed in more detail later.

The metric tensor plays an important part in the Einstein equation,

Rik − 1

2
gikR − Λgik =

8πG

c4
Tik[5]. (1.3)

Here, in addition to the metric tensor and physical constants, Rik is known as the Ricci tensor, R

the Ricci scalar, Λ the Cosmological constant, and finally Tik is the Stress-Energy tensor. Equation

(1.3) contains all the necessary information required to describe what space-time looks like and thus
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how matter will behave in such a structure. If we can make assumptions about the universe such

that we can solve Eq. (1.3) then we will be able to determine the evolution of the universe and its

contents as well.

1.1 Cosmology

The universe on very large scales appears to be homogeneous and isotropic. Postulated

by the Cosmological Principle, Isotropy means that the universe looks the same in any direction as

though Earth did not occupy a special place in the universe and homogeneity means that the universe

is identical everywhere. Cosmological Principle requires the energy distribution of the universe to

be spread perfectly evenly on average, and in this way it will be much easier to describe. [5]

1.1.1 The Robertson-Walker Metric

An isotropic and homogeneous universe can be described by the Robertson-Walker Met-

ric(RW);

ds2 = −c2dt2 + a2(t)

[

dr2

1 − κr2/R2
0

+ r2dΩ2

]

[11]. (1.4)

Equation (1.4) is the RW metric, which is very similar to the flat space-time metric (Eq. (1.1))

except that now there is the parameter a(t) known as the expansion factor. κ is the curvature

constant and can be either 0,+1 or -1 corresponding to a flat, positive, or negative curvature of

radius R0 [11]. The dimensionless expansion factor scales only with time, and its dependence on

time is derived by solving the Friedmann Equation.

We can see the effect of expansion already in that a particle could occupy some coordinate

in space, ~x, for all time but when one considers a change of coordinates, ~X = a(t)~x, then the particle

could occupy a different area of space over time depending on how a(t) varied. The coordinate ~x

is known as a comoving coordinate and ~X a proper coordinate. The distances to objects therefore
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obey the equation

d(t) = a(t)dcoord, (1.5)

where dcoord = (∆x2 + ∆y2 + ∆z2)1/2 is fixed in time but the physical distance d(t) can change by

Eq. (1.5) [9].

The expansion factor allows for a relation to the redshift, z. By definition z = λo−λe

λe
,

where λe is the wavelength emitted and λo is the observed wavelength. Most shifts in wavelength

occur due to relative motions between the observer and emitter. But there is a redshift due to the

expansion of space-time where the space between crests of a traveling wave are actually expanded

resulting in a redshift. If we consider the null geodesic (ds2 = 0), we can write the comoving distance

r as,

c

∫ t0

te

dt

a(t)
= r, (1.6)

with t0 being the present time and te the time of emission. This can be readily solved to obtain

a(te)

a(t0)
=

1

1 + z
, (1.7)

the expansion factor-redshift relation [11]. It is convention to set a(t0) = 1, with the Big Bang

occurring at a(tbigbang) = 0 and therefore z = ∞. When we look farther into space (and time as

well) we observe objects as being more and more redshifted, and when the velocity redshift equation

is taken into account (v ≈ cz for small z) it can be concluded that the universe was expanding at a

faster rate in the past.

1.1.2 Friedmann Equation

The Friedmann Equation comes about from solving Einstein’s Equation with gik is set

equal to the RW metric and the stress-energy tensor of a perfect fluid is used for Tik. This equation

allows for a solution of the time dependence of the expansion factor, a(t),

H2(t) = H2
0

[

Ω0,r

a4(t)
+

Ω0,m

a3(t)
+

Ω0,k

a2(t)
+ Ω0,Λ

]

, (1.8)
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H(t) is the Hubble Parameter and is equal to ȧ(t)/a(t) and H0 is the Hubble parameter today.

The density parameter is defined to be Ω0,i =
ρ0,i

ρ0,c
, where ρ0,i is the density today of some form

of energy, i (m, r, k, Λ), and ρ0,c is the critical density today. The present critical density is equal

to 3c2

8πGH2
0 ≈ 8.3 × 10−10Jm−3[11]. Ω0,r, Ω0,m, Ω0,k, Ω0,Λ correspond to the density parameters

of radiation, matter, curvature, and the cosmological constant respectively. If we can measure the

different density parameters than we can have a complete picture on how the universe evolves over

time, both in the past and in the future.

If κ = 0 then the density parameters will always add up so

Ω0,m + Ω0,r + Ω0,Λ = 1. (1.9)

So far κ appears to be zero from measured values of the density parameters. The Wilkinson Mi-

crowave Anisotropy Probe (WMAP) is a project by NASA to determine the contents of the Uni-

verse. Data taken from the WMAP survey have provided us with values of Ω0,dm = 0.23, Ω0,bary =

0.046, and Ω0,Λ = 0.72[3] with Ω0,r and Ω0,k having negligible values. Ω0,dm is the Dark Matter

component and Ω0,bary is the baryonic component which add such that,

Ω0,dm + Ω0,bary = Ω0,m. (1.10)

Λ, (dark energy), is dominate today and will be so in the future as well.

1.2 Structure Formation in the Universe

The Cosmological Principle states that the universe is homogeneous on large scale distances

of & 100Mpc. The Cosmic Microwave Background (CMB) (fig. 1.1) shows that the Universe was

very homogeneous in the past, so there must be something at work to bring matter in to form the

structures of the universe.

The answer lies in Gravitational Instability, wherein if a small density fluctuation forms,

that fluctuation grows due to gravitational collapse. As the mass of the object increases, its gravity
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Figure 1.1: The Cosmic Microwave Background radiation from early universe (z ∼ 1100) taken by
the WMAP 5-year survey. The temperature fluctuations are only on the order of ∼ 10−5K [10] and
imply a very uniform early universe.

increases by M(< r), thus accumulating more and more mass forming a deeper potential well until

after enough time, astrophysical structures like stars and galaxies will form. To see how these

fluctuations evolve in a pressure-less system (matter only), we can refer to the acceleration equation

with zero pressure;

ä(t)

a(t)
= −4πG

3
ρ̄(t), (1.11)

and we will let ρ(t) = ρ̄(t)[1+ δ(t)]. δ(t) is the density fluctuation ≪ 1. Using these equations along

with the Friedmann Equation we can obtain the following equation,

δ̈(t) + 2H(t)δ̇(t) = 4πGρ̄(t)δ(t). (1.12)

If we let H go to zero, then the universe is static, and you can solve the differential equation to

get an exponential collapse. The term 2H(t)δ̇(t) is sometimes called the “Hubble Friction” term, of

which the expansion of the universe acts against the growth of a density fluctuation and slows down

the formation of structures [11].

Perturbations could have began to grow when the Universe had cooled enough at z ≈ 1100

and would have grown in size by that same factor today. As we will see the perturbations began to

grow much sooner (z ≈ 3570) due to weakly interacting matter which gave early structures a head

start in forming before the Universe was cool enough for stars to begin forming.[11]
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1.3 Dark Matter

The first evidence for Dark Matter (DM) was discovered by Fritz Zwicky in 1933. He used

the velocity dispersion of seven different galaxies in the Coma Cluster to estimate a mass to light

ratio, Υ, using the Virial Theorem [2]. The Virial Theorem for a 1/r potential in a stable system

takes the form,

0 = W + 2K[11]. (1.13)

For Newtonian Gravity, W = −GM(<r)
r and K = 1

2mv2 with M(< r) being the total mass enclosed

by some radius. We can solve for the mass in terms of the rotational velocity (tangential velocity

also known as the circular velocity) of an object and its radius from the center of the galaxy. We

expect to find the rotational velocity,

vc =

√

GM(< r)

r
∝ 1√

r
, (1.14)

at large enough r. The mass enclosed depends on the density of the galactic disk which falls off

exponentially like ≈ exp

(

− R
Rs

)

, where Rs ≈ 3.5kpc. A few multiples of Rs away gives us a

reasonably negligible density and thus a constant mass enclosed, so we can assume the velocities do

fall off like Eq. (1.14) [11]. In the 1970’s it was found that the observed circular velocities didn’t

fall off but remained nearly constant out to the edge of the galaxies (fig. 1.2). This peculiarity has

been reconciled through the idea of DM, matter that interacts with normal baryonic matter only

through gravity. Since DM does not interact with baryons, no photons are created or reflected and

so it remains dark.

Typical values of these “constant” (there is noise but they remain on average constant)

rotational velocities are just above 200kms−1, with our Sun’s vc ∼ 220kms−1 at a radius r = 8.5kpc

from the galactic center (GC). If we consider now a constant velocity instead of a mass, we can

rewrite Eq. (1.14) to

M(r) =
v2r

G
= 9.6 × 1010M⊙

(

v

220kms−1

)2(
r

8.5kpc

)

.[11] (1.15)
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Figure 1.2: Three rotation curves for different density profiles. The Black curve uses the following
form I(r) = exp (−r/3.5kpc) where I(r) is the surface brightness profile of typical galaxies repre-
senting the stellar mass. The Red curve is given by the dark halo density ρd(r) = ρ0

1+(r/8.5kpc)γ where

γ = 2.1. [2] Lastly the Green curve is the sum of the two velocity curves and resembles observations.

If we scale the quantities to the properties of the sun, we can obtain a reference to just how much

DM there is in our galaxy by looking at the Milky Way’s Mass to Light Ratio, Υ. The luminosity

of the galaxy is estimated to be Lgal = 2.3 × 1010L⊙, dividing Eq. (1.15) by this value we get

Υ ≈ 50
M⊙

L⊙

(

Rhalo

100kpc

)

.[11] (1.16)

Rhalo is not exactly known, but from Globular Cluster observations it appears to go out to ∼ 75kpc,

giving us Υ ≈ 38M⊙/L⊙. This implies the dark halo is an order of magnitude more massive than

the stellar halo.

1.3.1 The Nature of Dark Matter

So far gravity has been the only lens with which we can observe DM. Just what exactly

DM is has been one of the questions of the century in Cosmology. Some candidates for DM include
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baryonic matter that we just can’t see, either primordial black holes, brown dwarfs or interstellar gas.

But none of those things are enough to account for so much missing mass. Many have considered

the neutrino since it is very weakly interacting, with a cross section ∼ 10−49m2 [12]. Although there

is a high density of neutrinos (nν ∼ 108m−3) [11], they have very little mass (∼ 4eV/c2). If we use

the neutrino mass observed from solar neutrinos, then they would only contribute to the universe

Ων ∼ 10−3. Not nearly enough to account for all the dark matter [11].

There have been many exotic candidates such as axions and others which stem from models

of particle physics beyond the Standard Model. Suppersymmetry offers a slew of potential DM

particles including photinos, gravitinos, axinos, sneutrinos and gluinos. These particles are thought

to be weakly interacting but are very massive with mc2 > 10GeV . These candidates of DM are

known as Weakly Interacting Massive Particles or WIMPs. There have been efforts to detect such

particles but none have been found as of yet [11].

1.3.2 Cold Dark Matter (CDM) and Substructure

Since the DM is weakly interacting, then as far as we know it was not affected by high

radiation and gas pressures in the hot early universe. So as baryonic matter needed time to cool

(z ∼ 1100) before density perturbations could form and grow, the DM had a head start (z ∼ 3570).

DM also makes up a considerable amount more of the total matter in the universe (∼ 5Ωbary),

therefore it can be argued that DM is dominant in the formation of structure in the Universe.

The state of the DM in the early universe (z > 1100) is key in determining how perturba-

tions can grow. If the DM is hot (DM particles are relativistic from the time they decouple from

the other components of the universe, until the mass enclosed in a Hubble Volume (c/H) is larger

than compared with the mass of galaxies) then the particles moving close to the speed of light wipe

out any density fluctuations (known as free streaming) on a scale of ∼ ctage [11], where tage is the

age of the universe at that time. At z ∼ 3570 the universe was ≈ 65kyr old giving a a size scale of

λ = ctage ≈ 20kpc. (1.17)
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If we consider a comoving size scale Lco = λ
a(tage) then we can get a mass scale estimate independent

of the expanding universe.

Lco = λ(1 + z) ≈ 70Mpc, (1.18a)

M =
4π

3
L3

coΩm,0ρc,0 =
4π

3
(70Mpc)3(0.27)(1.35 × 1011M⊙Mpc−3) ≈ 5 × 1016M⊙ (1.18b)

For Ωm equal to 0.27. Therefore all density fluctuations smaller than ∼ 1016M⊙ (the size of super-

clusters) will never form [11]. As a result, we should see structures larger than this forming first

as those will be the only fluctuations able to form and grow. Observations tell us, however, that

structures the size of galaxies (M ∼ 1012M⊙) form first and superclusters are now beginning to

collapse. This is known as bottom-up formation where smaller structures (ie. dwarf galaxies) form

first and then larger structures come about later. Since this is what we observe, CDM is the leading

theory on large-scale structure formation of the universe. On the galactic scale (M ∼ 1012M⊙)

smaller substructures form and accrete onto large structures until a galactic DM halo is formed.

These “subhalos” vary in size, are believed to be the seeds of star formation, and form “stream” like

structures when they accrete. Streams are key structures within galaxies and are a growing area of

research for both observers and theorists.

1.4 N-body Simulations

Structure formation theory is tested through the means of N-body computer simulations.

Higher resolutions are achieved by increasing the amount of particles, N, and decreasing the time

steps, ∆T . Advances in computing technology and algorithms have allowed for the study of sub-

structures with masses M ∼ 106M⊙[7] within the Milky Way. The Parallel K-D tree Gravity code

(PKDGRAV) is a commonly used algorithm for calculating forces on each particle. By using mul-

tipole expansions and cells (volumes containing a mass distribution, fig. 1.3) instead of individual

particles, efficiency is increased while maintaining accuracy and allowing for increased N. The many

cells can be distributed to different parallel processors (thousands in the case of a super computer)
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so that efficiency is increased once again.[14]

A force softening parameter ǫ is also used when computing the forces, where the force on

a particle ~Fi from all of the other particles is

~Fi =

N
∑

j=1

Gm2(~xj − ~xi)

(ǫ2 + |~xi − ~xj |2)3/2
. (1.19)

In this way large forces are avoided when particles with a singular dimension come in close proximity.

The large accelerations decrease the time step (∆T ∝ (F/F̈ )1/2) and thus increase the computing

time.

Figure 1.3: A Two-dimensional k-D Tree distributed over four processors. A hierarchy of buckets are
formed such that there are no more than eight particles in a bucket. The particles within a bucket
are set to interact by a fourth-order multipole expansion with all other buckets unless a bucket
happens to be within the opening radius (a radius of a bucket determined by the maximum distance
from a particle in the bucket to the center of mass). If the opening radius of a bucket intersects
the bucket in question, then all of the particles in both buckets are called to interact via a particle-
particle interaction (Eq. (1.19)). The task of Calculating the buckets is divided among the number
of processors available increasing efficiency [13]. By calculating forces between buckets, of which
there are fewer than the total amount of particles, force calculations are far more computationally
efficient while maintaining accuracy.
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2 Via Lactea

Via Lactea, (Latin for “Milky Way”), is an N-body Cosmological simulation of the Milky

Way dark matter halo. There are two such simulations, VL [6] and VL-2 [7], each using a total

halo mass ∼ 2 × 1012M⊙ . VL uses a force softening of 90 pc (40 pc for VL-2) and a time step of

0.2
√

ǫ/|~a| while VL-2 uses a time step of 0.06
√

1/Gρenc. The individual time step for each particle

is determined by dividing 13.7 Gyr/400 by two until a value less than ∆T is reached. |~a| is the norm

of the acceleration and ρenc is the enclosed density within the dominant structure at that time [7].

One of the main differences with VL-2 is that nearly five times as many particles are used,

bringing N up to 1.1× 109 resulting in a mass of 4, 100M⊙ for each particle (opposed to 21, 000M⊙

for VL) [7]. The local DM densities from each simulation are presented in figure 2.1. One key

difference in VL-2 is the increased amount of substructure in the form of DM subhalos. There is as

much as 1.97 times as many resolved subhalos in VL-2 as VL with a Vmax > 0.25kms−1 [7]. Vmax

is the peak circular velocity (the maximum of Eq. (1.14)), Vmax =
√

GM(< rvmax)/rvmax, where

rvmax is the radius where the peak circular velocity is reached. As these subhalos pass by the GC

they become disrupted and lose matter due to tidal forces. One subhalo can make several passes,

accreting material each time onto the host halo, leaving a smaller and smaller remnant. Figure 2.2

displays such an occurrence with an isolated subhalo from VL. Hundreds of the larger subhalos (with

Vmax > 15kms−1) accrete onto the host halo over the course of the simulation resulting in a chaotic

assortment of structures. The Dark Halo built upon the larger subhalo accretions only is shown in

figure 2.3.
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Figure 2.1: Local density maps of the dark matter halos from VL (top) and VL-2 (bottom). VL
uses ∼ 28 particles with a mass per particle of 21, 000M⊙. VL-2 uses five times as many particles
and has a mass per particle of 4, 100M⊙. Images were taken from the Via Lactea web page [8].

http://www.ucolick.org/~diemand/vl/index.html
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Figure 2.2: Radial and Mass evolutions with z=0 positions of an isolated subhalo. The top
panel shows a surface brightness and position projection today (z=0, relative to GC) of the sub-
halo. It has become very elongated and spread out over one hundred kpc. Z-axis units are in
magnitudes arcsec−2. The bottom two panels show the evolution of the subhalo’s mass and radius
relative to the GC starting at z=17 to today. After the first major pass (a ∼ 0.37) the subhalo loses
over 80% of its mass, and continues to do so with each pass of the GC.
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Figure 2.3: Particles within 402 kpc of the Dark Halo which formed from subhalo accretions. This
plot shows a projection of the VL-2 DM halo formed by subhalos with Vmax > 15kms−1 accreting
onto the host halo. The Z-axis scale is the number density of particles within each pixel. This halo
is the basis for the Stellar Halo when a star formation model is applied to the progenitors of the
substructures.

2.1 Building the Via Lactea Stellar Halo

We implemented the prescription used by Bullock & Johnston [4] to build a stellar halo

from the Via Lactea data. In this method, the history of each subhalo is used to assign gas for star

formation and an efficiency of the subhalo to turn the gas into stars is considered. The cold gas

mass accretion rate, h(t) is set to follow the DM accretion rate, such that

h(t) =
dM sat

vir

dt
[4], (2.1)

where M sat
vir is the virial mass of the subhalo satellite. Efficiency is taken into account by setting

a fraction of cold baryonic matter to DM fgas, taken by Bullock & Johnston to be 0.02. fgas

represents the fraction of material that is available for forming stars. The size of the subhalo is also

believed to be a factor in efficiency, so another factor C, which varies like

C =
Vmax(kms−1) − 30kms−1

20kms−1
(2.2)
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is used after the time of reionization (zre = 10). Vmax is calculated the same way as the circular

velocity, vc, only now Vmax is used as a general property of the subhalo’s mass. Before reionization

and for subhalos with Vmax > 50kms−1, C = 1. Lastly, a time-lag for the time it takes the cold gas

to settle and become dense enough for star birth is set to be tin = 6Gyr(1 + z)−3/2. They assume

that the star formation occurs over a time scale t⋆ of 15Gyr. So now the stellar mass of a subhalo

can be tracked by the following equations: [4]

dM⋆

dt
=

Mgas

t⋆
(2.3a)

dMgas

dt
= −dM⋆

dt
+ Cfgash(t − tin). (2.3b)

The stellar mass is accumulated up until the subhalo begins to accrete onto the host halo. Star

formation is stopped here for simplicity, and reasoned that stellar gas could be removed via ram-

pressure stripping as the subhalo falls in [4]. The time of accretion is determined by the time at

which the subhalo comes within 4RV max, where RV max is the proper circular speed radius of the

host halo. At that point star formation is halted and the stellar mass is assigned to each particle

depending on the particles distance relative to the median king core radius. The median king core

radius, rc, is the radius at which the projected density is half of the value of the core of a sphere.[2]

rc = 160pc

(

L⋆(L⊙)

106L⊙

)

. (2.4)

For simplicity, half of the stellar mass is distributed evenly to all particles within rc, and the other

half is distributed to all the particles within a shell rc < r < 2rc. The stellar mass is assigned as

solar luminosities by assuming a stellar mass to light ratio of M⋆/L⊙ = 2. The luminosity is in the

V , or Visual band of the spectrum [4].

2.1.1 Alterations to the Bullock Model

In both VL and VL-2, we increase the parameter fgas to 0.06 to compensate for the use of

different masses. Bullock & Johnston use the virial mass,

Mvir =
4π

3
ρM (z)∆vir(z)R3

vir [4], (2.5)
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where ρM is the average matter density of the universe and ∆vir(z) is the “virial overdensity” [4].

∆vir(z) and ρM take on larger values in the past and so the calculated mass can be “inflated”. We

calculate all masses via the circular speed of the subhalo, such that

Msubhalo =
V 2

maxRV max

G
, (2.6)

where RV max is the proper circular speed radius of the subhalo. Calculating mass in this way is

more physical, in that the mass does not depend on redshift (expansionary state of the universe). It

is important to note that the tracks are much more limited for VL-2 (27 as opposed to 200 snapshots

for VL) so tracking mass in VL-2 requires more interpolation, perhaps resulting in a less realistic

stellar halo. Because of the sparse tracks, determining the time of accretion is also more difficult for

VL-2. Therefore we’ve taken the time of accretion for VL-2 subhalos as the time that the subhalo

reaches its peak circular velocity (and therefore mass).

2.1.2 Results of Implementation

We use C++ and the “root” C/C++ interpreter to implement the Bullock method on VL

and VL-2. VL has 475 contributing subhalos, resulting in a total stellar mass of 1.6 × 109M⊙. Six

hundred and twenty five subhalos contribute to the VL-2 stellar halo totalling in 1.1×109M⊙. Both

stellar halos can be seen in figures 2.5, 2.4(a) and 2.4(b).
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Figure 2.4: Surface brightness projection of the inner 50kpc of the VL (left) and VL-2 (right) stellar
halos. Z-axis scale is in magnitudes arcsec−2. For (a), the central halo appears very smooth, with a
few bound objects in the outer 20kpc. For (b), the central halo has more visible structures resolved
up to the very center.
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Figure 2.5: Local density projections of the stellar halos for VL (top) and VL-2 (bottom). All parti-
cles within 402kpc are shown, where the color represents the local density value (particles kpc−3)for
that particle on a logarithmic scale (-1 for blue and 6 for white). Densities were found with “smooth”,
provided by the N-body shop at the University of Washington.

http://www-hpcc.astro.washington.edu/tools/tools.html
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3 Quantifying the Substructure

We are now in a position to provide a quantitative measurement of a stellar halo with

an accretion only origin. If the Milky Way and other galaxies did indeed form from hierarchical

accretions as Via Lactea has modeled then there should be evidence for it. The alternative (in situ

formation) predicts very little substructure [1], so a resemblance to the substructure from Via Lactea

would support an accretion origin. In quantifying substructure, we consider the efforts of others as

well as the limitations of observational data. Simulation data can offer infinitely certain (as far as

astronomical measurements go) information that is not readily available to observers.

3.1 Method

We take a simple approach by simulating “pencil beams” (constant solid angle lines of sight

in the sky, appendix A) in VL-2. We only apply this method to VL-2 to take advantage of the higher

resolution which can resolve finer substructures. The surface brightness within over lapping pencil

beams of various angular sizes and radii is counted. Then the difference is found between the two

beams by the following equation;

σ2
r =

∑

samples

(Sr,dΩ2
− Sr,dΩ1

)2

S2
r,dΩ2

. (3.1)

Where dΩ is the chosen angular size of the pencil beams, S is the surface brightness from all the stars

in that pencil beam and within some chosen radius, and σ2
r is the summed value of all the variances

squared from each area of the sky sampled. The surface brightness is calculated in mag/arcsec2
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units by

S(mag/arcsec2) = M⊙ + 21.572− 2.5log10(S(L⊙/pc2)) (3.2a)

S(L⊙/pc2) = 2.5log10

(

A(arcsec2)

F (L⊙/pc2)

)

(3.2b)

Where F is the flux, M⊙ is the absolute magnitude of the Sun taken to be 4.83, and A is the solid

angle subtended by the object(s). Since F and A are inversely proportional to r2, surface brightness

is independent of distance. In this way, the values of σ2
r will not be biased towards any particular

distance so only the clumpiness of substructures will be evaluated.

The argument in Eq. (3.1) will take on values ≪ 1 if there is little variation (Sr,dΩ2
∼

Sr,dΩ1
). If there are overdensities (Sr,dΩ2

≫ Sr,dΩ1
) or underdensities (Sr,dΩ2 ≪ Sr,dΩ1

) then the

argument will be either . 1 or ≫ 1 respectively. When the argument is summed over all areas of the

sky sampled, then the value σ2
r will be the average value of the argument multiplied by the number

of samples taken. To get an average quantity of the over all substructure σ2
r is normalized so that

σ̄2
r = σ2

r/N, (3.3)

where σ̄r is the new normalized substructure quantity and N is the number of samples. Thus values

of σ̄r that are . 1 or ≫ 1 will imply an overall clumpiness at that particular radius. Values ≪ 1

will then insinuate an overall smoothness and values in between could imply a mix.

We sample the Via Lactea sky with the bounds of all 360◦ around the azimuth, and from

30◦ to 60◦ for the elevated angles (see appendix B). A coordinate of (θ, φ) = (0, 0) would represent

the GC from our perspective. Within this area, radial distances of ∼ 7, 8, 11, 14, 17, 22, 28, 35kpc

and a ∆r of 1.0kpc are used (0.5kpc for the first radial sample, ∼ 7kpc). All radial distances are

from a perspective 8.5kpc from the GC (the Sun’s position in the Milky Way). These values were

chosen to correspond with current available data from the Sloan Digital Sky Survey (SDSS).



21

3.1.1 Meaning of σ̄
r

Other groups have attempted to quantify how much of the Milky Way’s stellar halo is

substructure (see Bell et al. [1]). In this way, by comparing smoothness and clumpiness in a total

fractional sense conclusions could be made on how much of the Milky Way stellar halo was built

by accretions or in situ formation. Our method attempts to quantify the degree of how clumpy

certain regions of the stellar halo really are. The VL-2 stellar halo is built entirely from accretions

and is essentially 100% substructure, but there could still be different degrees of smoothness and

clumpiness, and this is what σ̄r is designed to do.

3.2 Analysis of the Results

The σ2
r values from Eq. (3.1) are plotted in the figures on the following pages. An “aitoff”

projection is used just as in appendix B. In general, the smaller variations (smoother) tend to be

closer to the GC (lower central area) although the GC is not directly sampled. The largest scale

variations (6 − 14◦, fig. 3.5) tend to be uniform over all the sky sampled. These variations are the

smallest, and are nearly constant over the range of radii sampled (see fig. 3.1). There also appears

to be little variation on the scale of 4 − 8◦ (fig. 3.4) at radii > 7kpc. These two scales may be too

large to pick up subhalo remnants or smaller variations resulting in “smooth” quantities of σr.

There is a significant amount of clumpiness (more so than the 4−8◦ and 6−14◦ scales) on

the scale of 2 − 4◦ (fig. 3.3) and when you look at the sky projection most of the clumpiness comes

from areas away from the GC. From this, it may be that most substructure on this scale comes

from remnants of accreting subhalos, which are about 4◦ in size. On the smaller scale (1 − 2◦, fig.

3.2) there is a large amount of clumpiness, even when compared to the greatest contrasting scale of

1 − 8◦, of which it is expected that there would be large variations.

On all scales there is a consistent pattern that the stellar halo tends to become smoother

as you go farther out in radius. Since the larger variations tend to occur away from the GC the
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Figure 3.1: Values of σ̄r, Eq. (3.3) vs the radius, r. The scale with the most variations comes from
the 1 − 8◦ scale. This larger scale ratio is used to aid in comparison of the other scales, since it is
expected that this ratio would have the largest variations. The next most clumpy scale is 1 − 2◦,
which is very near the 1−8◦ scale. The 4−8◦ and 6−14◦ scales are the most smooth, implying that
there is little substructure on those size scales. The medium sized scale (2− 4◦) has an intermediate
range of variation.

contributions to σ̄r could be from nearby material that is in the process of or has recently accreted

onto the host halo. If so, this newly disrupted material would not have had time to settle, wiping

out any variations. Material from ancient accretions dissipate fairly quickly, appearing smooth in

space (Bell et al. [1]). Overall the values of σ̄r vary from 0.2 . σ̄r . 0.7 (for 1 − 2◦ variations)

implying a mix of a smooth and clumpy stellar halo. It is difficult to determine how much of which

from this method, which is a task for another project.
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Figure 3.2: σ2
r values using 1 − 2◦ pencil beams on an “aitoff” sky projection. A semi-sphere 360◦

around and the top 60◦ is used for sampling (coordinate projections are not shown, the axes only
give a general idea of position). The color is on a log scale varying from 10−6 (purple) to 10−3 (red).
White represents a value ∼ 0.
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Figure 3.3: σ2
r values using 2 − 4◦ pencil beams on an “aitoff” sky projection. A semi-sphere 360◦

around and the top 60◦ is used for sampling (coordinate projections are not shown, the axes only
give a general idea of position). The color is on a log scale varying from 10−6 (purple) to 10−3 (red).
White represents a value ∼ 0.
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Figure 3.4: σ2
r values using 4 − 8◦ pencil beams on an “aitoff” sky projection. A semi-sphere 360◦

around and the top 60◦ is used for sampling (coordinate projections are not shown, the axes only
give a general idea of position). The color is on a log scale varying from < 10−6 (purple) to < 10−3

(red). White represents a value ∼ 0.
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Figure 3.5: σ2
r values using 6 − 14◦ pencil beams on an “aitoff” sky projection. A semi-sphere 360◦

around and the top 60◦ is used for sampling (coordinate projections are not shown, the axes only
give a general idea of position). The color is on a log scale varying from 10−8 (purple) to 10−5 (red)
on the 28kpc panel (lower left) and reaching no more than 10−3 on the 7kpc panel (upper left).
White represents a value ∼ 0.
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Figure 3.6: σ2
r values using 1 − 8◦ pencil beams on an “aitoff” sky projection. A semi-sphere 360◦

around and the top 60◦ is used for sampling (coordinate projections are not shown, the axes only
give a general idea of position). The color is on a log scale varying from 10−6 (purple) to 10−3 (red).
White represents a value ∼ 0.
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4 Conclusion

In this paper we have quantified the different degrees of substructure in the Via Lactea II

stellar halo. The largest degree of variations occurred on a scale using 1◦ and 2◦ sized pencil beams,

while the larger scales (4−8◦ and 6−14◦) tended to show little variation. In general, the stellar halo

exhibited values of σ̄r inductive to a mix of clumpy and smooth structures. As the SDSS data are

expanded then perhaps more detailed comparisons can be made with the latest N-body simulations.

Future prospects center around creating a more realistic model for implementing light into

Cosmological N-body simulations like Via Lactea. Potentially, the metallicities of stars (fraction of

elements higher than He) and the different populations of stars (III-I, oldest to youngest) could be

tracked. It may be found that areas of the stellar halo with properties related to these may have

come about from an accretion origin stellar halo. The latest simulation in the works, Silver River

(Chinese translation for “Milky Way”), with ∼ 3× 1010 particles will allow further work in this field

with an ever increasing resolution.
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Appendix A

Pencil Beam Configuration

The configuration for measuring the surface brightness variations (Eq. (3.1)) in Via Lactea.

All of the light within the volumes dΩ1∆r and (dΩ2 − dΩ1)∆r is counted and used in calculating

the surface brightness (Eq. (3.2)). The beams are a constant angular size from our perspective but

at a greater radius the samples encompass more light.
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Appendix B

Via Lactea Sky Sampling

The following two figures represent the VL-2 stellar halo in a “aitoff” projection. The top

figure presents the total luminosity in solar luminosities per square degree squared (L⊙/degree2).

The color scale is a log scale with purple being 1, and red being 103. The bottom figure is the same

but only the area sampled (30◦ < φ < 90◦) for the quantification of the substructure is shown. This

is done to coincide with available data for comparison.
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