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Abstract

Numerical and Analytic Research into the Formation of the HD 80606b Planetary

System

by

Nicholas E. Zurn

Numerical simulations of the formation and evolution of the planetary system HD 80606b

were tested using a simplified four-body code written in C++ by myself and Michael Sebastian. HD

80606b is in a binary star system, and has the highest eccentricity of the known extrasolar planets

of e = 0.9321. To reach this eccentricity without interaction with other planets, it is expected that

it would have had to form at an inclination of 84.8◦ to the binary plane. We tested to see whether

or not high eccentricities could be reached with two planets initially in the system. With an extra

planet, we theorize that the initial inclination would not need to be ∼ 84◦, but could be ∼ 60◦ and

still produce high eccentricities. Out of twenty runs, 35% of those ended up with an eccentricity

higher than 0.95, and all but one run had a max eccentricity of 0.8 or higher. These initial results

provide strong support for our hypothesis, but are not conclusive. Further test will be conducted

using a full four-body code.
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1 INTRODUCTION

The question of whether or not planets existed outside our solar system was unknow

until 1992 when the first extrasolar planet was discovered. Aleksander Wolszczan and Dale Frail

confirmed that the pulsar PSR B1257+12 contained two planets, PSR B1257 +12 B, C (Wolszczan

& Frail, 1992). Both planets are about 4 times as massive as Earth. They were discovered using

the pulsar timing method, which uses the fact that pulsars rotations are so regular, any difference

in their rotational period is detectable. However, some argue that this was not technically the first

discovery of an extrasolar planet because in 1988, it was suspected that there was a planet orbiting

Gamma Cephei. Then in 1989, HD 114762 b was discovered but could not be confirmed to be a

planet until 1996. In 1995, Michel Mayor and Didier Queloz discovered the first extrasolar planet

to orbit a main sequence star, 51 Pegasi (Mayor & Queloz, 1995). The planet was named 51 Pegasi

b. These are the “firsts” of many planets outside of our Solar System to be discovered. As of May

4, 2009, there are 347 known extrasolar planets.

Many of the extrasolar planets have orbital characteristics which significantly differ from

the planets in our Solar System. The eccentricities can be much higher, and a large fraction orbit

very closely to their host star. According to recent data, ∼ 25% of these high eccentricity planets

are orbiting a star which is in a binary star system (Takeda & Rasio, 2005). This suggests that
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the planets possibly formed differently than the ones in our Solar System, or formed farther out

and migrated inward. In 2001, the planet HD 80606b was discovered (Naef et al., 2001), having

the highest eccentricity of all extrasolar planets of 0.9321. During its periastron passage, it comes

as close as 0.029 AU, which, for comparison, is about 7 solar radii. HD 80606 b’s mass is ∼ 3.68

Jupiter masses (MJ). It has an orbital period of 111.4 days, and a semi-major axis of 0.432 AU. It

orbits HD 80806, which is in a binary system with HD 80607. They are both main sequence, yellow

dwarf stars, similar to ours, and are separated by a distance of ∼1000 AU. The system is located

in Ursa Major, approximately 200 light-years away.

Much research has been done on the subject of extrasolar planets, from detection of them,

to simulating the dynamics of the upper atmosphere (Langton & Laughlin, 2008). This thesis

focuses on the evolution of HD 80606b and how it achieved such a high eccentricity, similiar to the

work done by Wu & Murray (2003). We also use many of the same values and assumptions they

used. In addition, some parameters were used from Ford (2000), in which numerical integrations

for the dynamical evolution of planetary systems containing two identical planets were tested. A

few of the parameters used by Ford were that the two planets formed in nearly cicrular orbits, and

orbited very close to the dynamical stability limit. Also, the initial relative inclination of the two

planets ranged from 0 to 5◦, and the remaining angles were randomly chosen between 0 and 2π.

One thing that differed from Ford’s values in our runs was that we chose the initial eccentricity to

be between 0 and 0.1 insead of 0 and 0.01.

In Chapter 2 I discuss the theory of the Kozai mechanism, and how it could be responsible

for the current orbit of HD 80606b. The initial setup and parameter distributions are discussed

in Chapter 3, along with assumptions that are made. Finally, I discuss the data and results in

Chapter 4.
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2 THEORY

A planet orbits a star under Newton’s equation:

d2r/dt2 = −GMr/r3 (2.1)

where G is the gravitational constant (6.673 × 10−11m3kg−1s−2), M is the mass of the star, r =

xx̂ + yŷ + zẑ and r = |r| =
√
x2 + y2 + z2. This equation is used to describe the motion of a

single body in three dimensions. It has been established that the motion of two bodies can also be

described by equation 2.1. However, for three or more bodies, the equation of motion must contain

a term for the mutual gravitational attraction of each pair of bodies. For example, the x-component

of the acceleration for body 2 in a three-body system is:

a2,x = −G((m1(x2)/r312) +m3(x3 − x2)/(r323) +m1m3(x3)/(r313)) (2.2)

In this equation, m1 is taken to be at the origin of the system, r12 is the separatoin between

bodies 1 and 2, r23 is the separation bedween bodies 2 and 3, and r13 is the separation between

bodies 1 and 3. Using this simple equation of motion, and considering different configurations

of bodies, one sees that interesting things can happen. For example, it is well known that many

extrasolar planets have eccentricities much higher than the planets in our Solar System, and at least

a quarter of these reside in binary star systems (Takeda & Rasio, 2005). Could the fact that they
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are in a binary star system have anything to do with their high eccentricities? It is more than likely,

and is the basis for a theory proposed by Wu & Murray (2003) which explains this phenomena.

2.1 The Kozai Mechanism

In 1962, Yoshihide Kozai developed a theory that is now known as the Kozai mechanism.

In his original paper he studied how inclined asteroids are perturbed under the influence of the Sun

and Jupiter, when the asteroid is much less massive than Jupiter. This same concept can be applied

to extrasolar planetary systems if instead of an asteroid, a Jupiter size planet is considered. Also,

used in place of Jupiter for the second perturbing object would be another star that is the binary

companion of the host star. The Kozai mechanism can cause a planet’s eccentricity to be increased

to values near unity if its initial inclination is inclined enough relative to the binary plane. This

mechanism has been used to explain the unusually high eccentricities in extrasolar planets, most

notably in the case HD 80606b (see next section), which has the highest eccentricity of all known

extrasolar planets.

The Kozai mechanism requires some conditions to be met for it to work. First of all, it

requires the planet’s host star to have a binary companion. Even if this companion is far away,

as long as the planet’s orbit is initially inclined to the binary plane by more than 39.2◦ (Kozai,

1962), it can have a significant effect which will perturb the planetary orbit. If the inclination is

lower than this, then the periapse argument rotates very fast through all the angles and the torque

exerted on the planet averages essentially to zero. Also, the Kozai oscillations must be shorter than

the age of the system, otherwise there will not be enough time for the eccentricity to grow to large

values. With these requirements met, and enough time, cyclical angular momentum is exchanged

between the planet and the distant companion causing long periods of oscillation in the eccentricity
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and inclination. These long-period oscillations are known as “Kozai oscillations” (Kozai, 1962), and

usually last ∼20 Myr. During the transfer of angular momentum, orbital energies remain almost

unchanged. Orbital parameters such as the mass and semimajor axis of the planet and star do not

affect the eccentricity or inclination; they only affect the period of the Kozai cycles. During Kozai

oscillations, the semimajor axis of the planet remains roughly constant. It is up to other processes

to bring the planet in closer to its host star. Assuming that the planet formed in a nearly circular

orbit, it is shown (Innanen et al., 1997) that the maximum eccentricity is given by:

emax =

√
1− 5

3
cos i02 (2.3)

The Kozai mechanism is quite sensitive in that it doesn’t take much to either reduce

it, or break it completely. Kozai oscillations can be broken by things such as non-spherical stars

(Soderhjelm 1980; Innanen et al. 1997), planet-planet interactions over long time-scales (Innanen

et al., 1997), and general relativistic effects (Ford et al. 2000). All these processes can effect the

precession of the pericenter argument of the planet, hence reducing the average Kozai torque. If

the perturbations cause precession faster than the Kozai precession rate, then Kozai oscillation is

destroyed (see WM03, Eqn. 2).

2.2 Kozai Migration of HD 80606b

With the highest known eccentricity, HD 80606b’s life history is an interesting topic to

investigate, and is the focus of this thesis. There has been much research done on the planet since

its discovery in 2001 (Naef et al. 2001). In 2003, Wu and Murray proposed an idea that could

explain how the planet obtained such an eccentric orbit, using the theory of Kozai (1962).
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Because HD 80606 has a companion located roughly 1000 AU away, a new theory was

developed which involved the companion star being responsible for the high eccentricity and small

orbit of the planet. There are two main components to this theory. First, the planet is assumed to

have been born at a distance of a few AU from its star, while its orbital plane was inclined relative

to the stellar binary plane. The theory is that the companion star will induce an eccentricity

oscillation due to the Kozai mechanism (Kozai, 1962). This is where the planet trades orbital

inclination for eccentricity. When the relative inclination between the orbital planes is above the

critical angle (I > 39.2◦), long term cyclic angular momentum exchange occurs between the planet

and the companion star (Takeda & Rasio, 2005). The second component to the theory is tidal

circularization. This is most effective during times of high eccentricity in the Kozai cycle. This

dissipative tidal process irreversibly draws the planet inward. This process is known as “Kozai

migration.” While the companion star is far from the planet, it still has a significant effect in that

it will perturb the planetary orbit as long as the planets orbit is inclined more than 39.2◦ to the

binary plane. As a result of angular momentum exchange with HD 80607, the planet’s eccentricity

and inclination could go through large cyclic variations, increasing greatly over time. Because the

mass and semimajor axis of the companion star is much greater than that of HD 80606b, effects

on the companion’s orbit can be neglected. Using this approximation, the z-component jz of the

planet’s angular momentum is conserved.

jz =
√
GMapMp

√
1− e2 cos I (2.4)

The z-axis is normal to the plane, and the subscript p denotes the planet. Here, ap is the

semi-major axis of the planet, I is the inclination, and e is the eccentricity, where
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e =
√

1 + 2h2E/µ2 (2.5)

While the planet is undergoing Kozai oscillations, the Kozai integral

HK =
√

1− e2 cos I (2.6)

is conserved. A maximum in e occurs during the time when I is at its minimum, and vice versa.

This can be seen in Fig. 2.1 and 2.2. The Kozai cycle will last tens of millions of years. During

these cycles, the Kozai integral remains constant, which yields I ≥ 84.8◦ for an initial e = 0.1 (Wu

& Murray, 2003). This means that the planet must have formed nearly perpendicular to the binary

plane. As of today, this is one of the leading theories that explains why Jupiter sized extrasolar

planets have such high eccentricities. Although this theory seems to explain the highly eccentric

orbits of extrasolar planets in binary systems, it can’t be the only one, or be 100% complete. There

could be other factors that play a part that are unknown at the present time. The problem with

the Wu-Murray theory is that (a) it requires an extremely improbable initial configuration of the

system and (b) it requires that there be no other planets in the HD 80606 system, which would be

unexpected for a star of HD 80606’s high metallicity. Thus, we strive to explain this phenomenon

using a slightly modified version of this technique.
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Figure 2.1: Eccentricity and Inclination vs Time Because the Kozai integral is conserved,
when either the inclination or eccentricity goes up, the other must go down. This plot nicely shows
that happening for a single planet in a binary star system.

Figure 2.2: Eccentricity vs Inclination This plot is just another way of showing that the incli-
nation and eccentricity are inversely proportional to each other.
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3 METHODS AND ASSUMPTIONS

The purpose of this thesis is to simulate the evolution of the HD 80606b planetary system,

in hopes of reproducing the planets high eccentricity under different initial conditions than those

proposed by Wu & Murray (2003). We also strive to explain some unresolved issues with the Wu-

Murray Theory. The HD 80606b planetary system is in a binary star system containing two yellow

dwarf stars like our Sun, with the planet HD 80606b orbiting HD 80606. Although there are only

three bodies, as discussed in the Theory section we hypothesize that adding a second planet to the

system will allow high eccentricities to be reached without such extreme initial conditions. Thus,

we now have a four body system, which required a four body code to be written. The journey to

get to the final four-body code that is used for our simulations has been a long one. There were

many other smaller codes that were written first and tested to make sure they worked correctly.

Once we had all our separate codes working, we were able to put them together to make one code

encompassing all the different aspects needed to properly run simulations and test our theory. In

§3.1, an overview of the steps taken to reach the final production code is given. With the code

completed and ready for performing tests, §3.2 will cover what initial conditions each object started

out with, and what assumptions were made. Finally, §3.3 will talk about how our test runs were

set up and performed.
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3.1 Brief Overview to Making Final Working Code

The first few codes were fairly simple, and were mainly to help us get used to using

programming to solve scientific problems. Once this was accomplished, we wrote a 2-dimensional

two-body code. This involved just one planet orbiting a star in a keplerian orbit. After we were

sure this was working properly, we made the code more realistic by making it 3-dimensional (3D).

With the 3D code up and running, we added a third body to the system (HD 80607). With the

second star now part of our code, we were able to test to make sure that the planet underwent Kozai

migration, as it should in a binary system with the correct initial conditions. Figure 3.1 shows that

the planet underwent Kozai migration. Confident that Kozai migration was indeed happening, we

added one more planet which orbited the same star as the first planet, being that we ultimately

needed a four-body code to simulate our theory of the evolution of the HD 80606b planetary system.

However, our code is not a true four-body code. We are assuming that the stars’ orbit is Keplerian

(i.e., a perfect ellipse), so the planets do not affect the stars’ motion. It is beneficial to use this kind

of code for our simulations because it will run faster, and will also demonstrate that our approach

is clearly feasible. With our final production code ready, we began to start running tests. For a

more thorough and complete discussion of steps leading to the final code, and how the code itself

works, see Sebastian (2009).

3.2 System Parameters and Constraints

The masses of the stars and planets stayed the same throughout every run, along with

the initial semimajor axes. The initial orbital parameters were randomly generated. The system

parameters are described below, and summed up in table 3.1.
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Figure 3.1: Kozai Oscillations This graph shows Kozai oscillations for a 4 MJ planet in a binary
star system. The initial inclination was set at 80◦, and the planet’s orbital evolution ran for ∼ 95
Myr.

Mass of host star (m1, HD 80606). - The mass of the primary star is slightly less massive

than our sun at 0.9 M�, where a solar mass is 1.98 × 1030 kg. This seems to be about average

among stars with orbiting planets. According to the California and Carnegie Planet Search, about

60% of stars with discovered planets are 0.9-1.1 solar masses.

Mass of binary star (m3, HD 80607). - The mass of the binary companion is similar in

spectral type and metallicity to HD 80606, and is therefore assumed to be the same as the primary

star at 0.9 M�.

Mass of planet 1 (m2, HD 80606b). - While the exact mass of the planet is hard to deter-

mine, we know that it is approximately 4 ± 0.3MJ . The planet’s inclination has been constrained

by transit observations (Laughlin et al. 2009, Fossey et al. 2009), so RV measurements determine

that mass m2 = 4.0MJ . We therefore adopt the planets mass to be 4 MJ .
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Table 3.1: System Parameters

Parameter Value

M1 0.9× 1.98× 1030kg
M3 0.9× 1.98× 1030kg
M2 4× 1.89× 1027kg
M4 4× 1.89× 1027kg
i2 60◦

i4 60◦ ± 5◦

e2 0-0.1
e4 0-0.1
a2 5 AU
a4 7.6 AU

Ω, ω 0-2π

Mass of planet 2 (m4, HD 80606c). - The fact that the second planet is further out from

the star than the first planet means that it can not be larger than the other planet. This is because

there is less material (dust, gas, rocks, etc.) the farther out you go. Most of the matter is closer in

towards the star where the gravity is larger. This in turn means that a planet further out will not

be able to grow larger than a planet closer inward, and in our case that limit is 4 MJ . The mass of

the second planet is thus set to 4 MJ .

Initial inclination of planet 1 (i2). - According to the theory of Kozai, a planet must have

a minimum initial inclination of ∼ 40◦ in order for the Kozai mechanism to take place. In the

case of HD 80606b, the inclination must be ≥ 84.8◦ (Wu & Murray, 2003). Since we are trying to

achieve the same high eccentricity with a lower initial inclination by adding a second planet, we

run the test at an initial inclination of 60◦.

Initial inclination of planet 2 (i4). - We assume that both planets formed in nearly

coplanar orbits, thus having approximately the same inclination. We therefore start the second

planet out at an inclination within ±5◦ of the first planet.
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Initial eccentricity of planet 1 (e2). - Our theory assumes that a planet would form in a

nearly circular orbit. We therefore randomly choose a value between 0 and 0.1, the same as used

by Wu & Murray (2003).

Initial eccentricity of planet 2 (e4). - The theory of how planets form tells us that not

only does the material exist in approximately the same plane, but it also should be spinning with

about the same eccentricity. It is therefore appropriate to assume that the second planet formed

with the same initial eccentricity as the first planet. Thus we use the same initial eccentricity as

the first plane which is between 0 and 0.1.

Initial semimajor axis of planet 1 (a2). - In staying within close accordance to the values

used by Wu & Murray (2003) Wu and Murray (2003), a semimajor axis of 5 AU is used to start

out with. This value of the semimajor axis is chosen because 5 AU is a reasonable distance for a 4

MJ planet to form.

Initial semimajor axis of planet 2 (a4). - A value of 7.6 AU is chosen for the second planet.

This is because it is just inside the edge of the instability zone. Any further out and the planet is

likely to be stable; any further in and it’s not likely that a second planet could have lasted long

enough to reach 4 MJ . Figures 3.2 and 3.3 show this stability and instability over a period of

about 100 Myr. It is assumed that after this amount of time, either the planets’ orbits would not

change, or one planet would be ejected from the system.

Initial orbital elements (Ω, and ω). - The initial values for the longitude of the ascending

node Ω, and argument of periapsis ω were randomly generated to have a value between 0 and 2π.
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Figure 3.2: Orbital Instability with Planet Closer A test run was performed with the second
planet at a distance of 7.4 AU. As can be seen, inside 7.6 AU, the planets interact with each other
very quickly, which would not allow a second planet to form.

Figure 3.3: Orbital Stability with Planet Farther At a distance of 7.8 AU, both planets remain
stable in their orbits, interacting little with each other.



15

3.3 Numerical Simulations

Our simulations were run using a computer code written by myself and Michael Sebastian.

We are studying the orbital evolution of planetary systems containing two planets in binary star

systems. Both planets are identical, with a mass of 4 MJ , and orbit a 0.9 M� star with semimajor

axes of 5 and 7.6 AU. The binary companion is also a 0.9 solar mass star which orbits the main star

with an eccentricity of 0.5, and has a semimajor axis of 1000AU. After randomly generating the

values for the orbital elements, we integrated the equations of motion described in the theory section

(Eq. 2.2 but with four bodies). The positions of the planets are integrated using the Fourth Order

Runge-Kutta method (RK4). The RK4 method numerically solves ordinary differential equations,

using four evaluations per time-step to give fourth order accuracy. For further explanation, see

Sebastian (2009). The code also has another important aspect to it, and that is adaptive time steps.

This basically determines where an object is in its orbit, and adjusts the time step accordingly. If

the planet is close to the star, such as during its periastron passage, the code will make the time

steps smaller, and vice versa if the planet is at apastron (farthest distance away from the star).

This is important because during periastron passage the planet is moving very fast, so we want a

small time-step which gives us more data points during that part of its orbit. During apastron the

planet is moving much slower, so we want the time-steps to be larger since we are not as interested

in what is happening there. Also, if the time-steps were to stay the same throughout the whole

orbit, our data files would be extremely large, containing a lot of unnecessary data. It is therefore

crucial that our code have adaptive time-stepping.

There are a few things that we neglected to incorporate into our code, such as general

relativistic effects (GR precession), tidal effects, and rotational bulges on the planet. Leaving things

such as tidal effects out will affect the results of our runs. For example, Kozai migration alone can
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only account for bringing the planet in so close to the star. For further migration, things like tidal

circularization are required. However, our models will only hope to show that high eccentricities

can be achieved with two planets in the system. We are not trying to obtain actual values for

the final semimajor axis of the planet, and are assuming processes such as tidal circularization will

occur later on in the planets life, thus bringing the planet in closer to the star. We also ignored the

effects of the force on the binary star due to the planets. Because the binary companion is so far

away, and both planets are very small compared to it, we assumed the force to be negligible. With

this assumption, the motion of the binary will not be completely accurate, thus the force it exerts

on the planet during Kozai migration will not be accurate either. Another thing that will affect

our results is the range we chose for the eccentricities of the planets. We chose e to be between 0

and 0.1, which is too large a range, and should have been between 0 and 0.01. This is not that big

of a deal however, and should not affect our results too much. Finally, there is an error in our code

in that we set the ecentricity of both planets to be the same. There is no reason to assume this

though, but since the eccentricities are generally lower than 0.1, we do not expect it to make a big

difference in our results.
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4 RESULTS

The objective of this thesis was to test whether or not high eccentricities could be reached

in a system which initially contained two planets that formed at a lower inclination than ∼ 84◦. Wu

and Murray (2003) determined that for the case of HD 80606b, the planet had to have formed at

an inclination > 84.8◦ to the binary plane to reach its current eccentricity of 0.9321. However, we

theorized that with a second planet, high eccentricities could still be achieved. Twenty simulations

were run to test this theory, with the initial inclination being 60◦. Table 4.1 shows the max

eccentricity obtained for each run. Also, Fig. 4.2 is a histogram that was made to show the

distribution of max eccentricities. While we do not state which planet was ejected from the system

because it does not matter, the outer planet we ejected most of the time. Due to conservation of

energy, once either planet is ejected, the one still in orbit would be left with a semimajor axis of

afinal ≈ a1a2/(a1 + a2) ≈ 3.01 AU. For a derivation of this equation see Ford (2000). A good

example that the Kozai mechanism can still take place, and high eccentricities can be reached is

shown in Fig 4.1. The first part of the graph shows when the two planets are still in the system.

Both orbits are highly chaotic, until finally one of the planets gets ejected from the system. At

this point, it can be seen that the planet left in the system has an increase in eccentricity and

oscillates around e = ∼ 0.92, going through two and a half Kozai cycles and obtaining a maximum



18

eccentricity of e = 0.9566. This run is evidence that an initial inclination of 84◦ is not necessisarily

needed for the Kozai mechanism to work, and that it can happen even at 60◦.

Figure 4.1: Kozai Cycles Both planets are initially in the system, as shown by the first part of
the graph, then after one gets ejected, the planet left in orbit undergoes Kozai cycles, reaching a
maximum eccentricity of 0.9566.

Out of all the runs, 35% had a max eccentricity > 0.95, 50% > 0.9, 75% > 0.85, and

95% > 0.8. The highest eccentricity was 0.9982, and the lowest was 0.6188, which is still very high

for a planet. In comparison, Mercury has the highest eccentricity in our Solar System of 0.2056.

We are interested in eccentricities that are higher than ∼0.95 because during processes like tidal

circularization, which will draw the planet in closer, some eccentricity will be lost. Therefore it is

important for the planet to have an eccentricity higher than 0.9321, so after the planet comes to a

stable orbit, it will have an eccentricity as high as HD 80606b, which is the purpose of these tests.

According to Wu & Murray (2003), HD 80606b would have had to reach an eccentricity of 0.993

during the Kozai cycle in order to produce the periastron currently observed; this is also assuming

the planet had a semimajor axis of 5 AU.
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Table 4.1: Max Eccentricities

Run Max e Run Max e
1 0.8649 11 0.6188
2 0.8962 12 0.9174
3 0.9982 13 0.9612
4 0.8698 14 0.9158
5 0.9924 15 0.9053
6 0.8249 16 0.9765
7 0.8667 17 0.9924
8 0.9917 18 0.8064
9 0.8460 19 0.9566
10 0.8247 20 0.8906

While plotting the eccentricity versus time for one of the test runs, I noticed something

interesting. During the Kozai cycles, smaller oscillations were taking place. This can be seen in

Fig. 4.3.

This effect is however probably due to errors caused by our assumptions. The smaller

oscillations go away if a full four-body code is used instead of the modified version we used, and

also if Jacobi coordinates were used. This is where you calculate the orbital elements of a body

relative to the center of mass of all bodies interior to that body. For our next project (see next

Chapter), these will be taken into account and hopefully correct this effect.



20

Figure 4.2: Histogram of max eccentricities

Figure 4.3: Oscillations in Kozai cycles Smaller oscillations can be seen within each full Kozai
cycle. However, this is probably due to errors in our code, and has no real significance
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5 CONCLUSION

The evolution of a two-planet system within a binary star system was tested. We theorized

that with two planets initially in the system, one planet could reach high eccentricities through the

Kozai mechanism (Kozai, 1962) with the ejection of the other planet . With the second planet in

the system, we proposed that this could happen with an initial inclination of only 60◦ to the binary

plane, and not 84.4◦ as determined by Wu & Murray (2003). Our tests show that high eccentricities

can be reached, with 35% of the runs achieving e > 0.95. In every case, one planet got ejected from

the system, leaving the other one with a higher eccentricity and smaller semimajor axis. Many of

the runs would look like this when plotted. Some end up with a high eccentricity like 4.1, and some

would only reach e = ∼ 0.8. This just shows that it is possible for high eccentricities to be reached

without such extreme initial conditions. Being that many extrasolar planetary systems have planets

with large eccentricities, these results look promising. However this does not prove our theory, it

just provides strong evidence for it. It should be noted that these results are just preliminary

because we did not use a full four-body code, but they do however support our hypothesis.

The Work that was done for this thesis will not be the end. Our next goal is to use a

full four-body code and test our theory again. This means the new code will account for the force

exerted on the binary companion by the two planets, as well as the main star, making its orbital
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path more realistic. We will also take into account the fact that the planets would probably have

had slightly different eccentricities to begin with, and will make our initial values range from 0 to

0.01. Also, many more tests will be run, probably up to 100 or more. The tests will cover a wider

range of initial inclinations, all the way from 60◦ to 80◦ with 5◦ increments in between. Overall,

the next code will be more accurate to real life situations, and will hopefully help us to better

understand extrasolar planets, and how they might have evolved.
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