UNIVERSITY of CALIFORNIA
SANTA CRUZ

ATTITUDE ESTIMATION FOR A LOW-COST UAV

A thesis submitted in partial satisfaction of the
requirements for the degree of

BACHELOR OF SCIENCE
in
PHYSICS
by
Gregory M. Horn

19 March 2009

The thesis of Gregory M. Horn is approved by:

Professor Gabriel Elkaim Professor David P. Belanger
Technical Advisor Thesis Advisor

Professor David P. Belanger
Chair, Department of Physics

Copyright (© by
Gregory M. Horn

2009

Abstract

Attitude Estimation for a Low-Cost UAV

by

Gregory M. Horn

Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) are a rapidly growing area of research
and development. One of the biggest technical barriers is attitude estimation, which is typically done using
microelectromechanical systems (MEMS) inertial sensors and an embedded Kalman filter. This requires
either an expensive commercial module or significant knowledge of electronics, attitude dynamics, and
Kalman filtering. This thesis presents a sophisticated quaternion-based Kalman filter which is capable
of running at 100 Hz in floating point on a 16-bit microcontroller, without sacrificing performance. The
whole attitude estimation system is reproducible for around $500 and will be made open source.

This thesis presents the complementary sensor fusion problem and proposes the extended Kalman
filter as a solution. The necessary mathematical background in spatial rotations and attitude dynamics is
developed and the implementation equations for an extended Kalman filter are derived using the quaternion
attitude representation. This algorithm is verified in simulation, resulting in roll, pitch, and yaw RMS errors
of 1.03, 0.901, and 2.47 degrees respectively over the simulation of a 10-minute flight.

A custom autopilot board is designed and fabricated, and the attitude estimation algorithm is
embedded and shown to be capable of running at 100 Hz in floating point on the 16-bit dsPIC33F (which
costs $10 and has no floating point unit). The autopilot board is flown on a remote-control model aircraft
under human control and a data set of flight sensor readings is recorded. Although there is no truth data
to compare to the attitude estimation output, results indicate that the attitude estimation algorithm works
reliably on real flight data.

Autonomous control algorithms have been developed and validated in simulation, and in future
research an aircraft will be flown under full autonomous control. When the system is proven, all algorithms,

software, and hardware designs will be published to the open source community in order to promote low-cost

UAV research. Any university lab with reasonable technical experience will be able to start a UAV program

based on our system for under $1000 including the aircraft.

Contents

List of Figures vii
List of Tables ix
Dedication x
Acknowledgements xi
1 Introduction 1
1.1 SLUGS . . e 2

2 Kalman Filtering 4
2.1 Statement of the Problem 4
2.1.1 Filtering Accelerometerso 5

2.1.2 Integrating Rate Gyros 5

2.2 The Observer e e e 6
2.3 The Kalman Filter e e e 9
2.3.1 The Extended Kalman Filter 10

3 Attitude and Spatial Rotations 12
3.1 Introduction e e e e e 12

3.2 Euler Angles 13
3.3 Direction Cosine Matrix L e e 16
3.4 Axis and Angle of Rotation L 17
3.5 Quaternions e 19
3.6 The Error Quaternion 25

4 Attitude Dynamics 27
4.1 Equations of Motion in Rotating Reference Frames 27
4.2 Euler Angle Dynamics 30
4.3 Quaternion Dynamics L L 32
4.4 FError Quaternion Dynamics Lo Lo 33

5 Implementation Equations 35
5.1 Full Quaternion Filter 35
5.1.1 State Transfer 35

5.1.2 Measurement L e 37

5.1.3 Noise Covariance Matrices i i e e 39

5.2 Error Quaternion e 40

5.2.1 State Transfer e e e e 41

vi

5.2.2 Measurement Lo e
5.2.3 Noise Covariance Matrices L
5.2.4 Implementation Summaryo
5.3 100 Hz Measurement Quaternion Filter
5.3.1 Measuring € Directly
5.3.2 Implementation Summary Lo
6 Results
6.1 Simulation oL
6.2 Benchtop Testing oL e
6.3 Flight Testing o e

7 Conclusion
A SLUGSv1 PCB

B MATLAB code
B.1 Measurement Quaternion Implementation
B.2 Error Quaternion Implementation Lo
B.3 Full Quaternion Implementation

Bibliography

53
93
o4
57

59

60

69
69
(0]
80

87

vii

List of Figures

1.1
1.2
1.3

2.1
2.2

2.3

2.4
2.5

3.1

3.2

3.3
3.4
3.5

4.1

4.2

6.1
6.2
6.3
6.4
6.5
6.6

Al
A2
A3
A4
A5
A6

An Air Force RQ-4 Global Hawk UAV 1
The SLUGS autopilot e 2
Programming the microcontroller in Simulink o000 3
Two dimensional vector rotation L Lo 4
Simulation of a spring with dampening. The raw measurements are very noisy so a low-pass

filter is applied for smoothing, which causes a phase delay. 6

Simulation of a spring with dampening. A non-ideal velocity sensor is integrated to extract
position. Bias drift on the velocity sensor is also integrated, causing an increasing error on

the position estimate. oL 7
Formation of the observer e 8
Kalman filter applied to spring with dampening and noisy measurements. The 1-0 bound on

the position covariance shrinks as the filter converges. 10

Earth and body reference frames. The Earth (NED) axes are (z,y, z) and the body axes are

(@Y 2) e 12
Nonlinearity in the NED frame. A particle travels a unit distance north, west, south, and

then east, but does not arrive where it started. o000 13
The Euler angles e 13
The 3-2-1 Euler angle rotation sequenceo L. 14
Generalized rotation axis. Any rotation sequence can be expressed as a single rotation of

angle o about the Euler axis 17

Dynamics in a rotating reference frame. Even though the velocity vector in the body frame

is unchanging, mass in that frame experiences acceleration. 28
The incremental axes in the 3-2-1 Euler rotation, and the final body axes 31
Simulation of attitude estimation algorithm 53
Measurement quaternion simulation results L. 55
The SLUGS board e 56
Benchtop testing of the embedded attitude estimator 56
Flight testing the system o o7
Post flight filtering e 58
SLUGSv1 block diagram (detail) L 60
SLUGSvVI layout o o e e e e e 61
SLUGSvI schematic page 1 0 e 62
SLUGSvVI schematic page 2 o . o 0 e 63
SLUGSvI schematic page 3 o e 64

SLUGSvI schematic page 4 e 65

A.7 SLUGSv1 schematic page 5
A.8 SLUGSvI schematic page 6
A.9 SLUGSvI1 schematic page 7

viii

ix

List of Tables

2.1
2.2

5.1
5.2

6.1

Discrete Kalman filter implementation equations 9
Extended Kalman filter implementation equations 11
Error quaternion filter implementation algorithm 47
Measurement quaternion filter implementation algorithm 52

Error quaternion simulation RMS errors oo 54

For my family. Without your love and support I could not be where I am today.

xi

Acknowledgements

I would like to thank my thesis advisor, Gabriel Elkaim. Gabe introduced me to most of the concepts
contained in this thesis. He provided guidance, and allowed me the freedom to pursue the project with my
own style. Mariano Lizarraga has put more time into this project than anyone else. He has worked tirelessly,
contributing to every facet of the system. Without his work there would be no UAV.

I would also like to thank Bruce Schumm, Ned Spencer, Max Wilder, and all of the other wonderful
people at the Santa Cruz Institude for Particle Physics (SCIPP). They introduced me to undergraduate

research and taught me the skills in electronics and prototyping which I utilized throughout this project.

1 Introduction

The development and operation of Unmanned Aerial Vehicles (UAVs) have been almost exclusively
limited to military (see Figure 1.1) and government (e.g., NASA) applications because of prohibitive cost.
In the future, civilian UAVs and and Micro Aerial Vehicles (MAVs) will contribute to society in many ways.
Groups are looking into their use for search and rescue, fire fighting, flight safety research, aerial photography,

recreation, and more, but before UAVs become commonplace their cost must be reduced significantly.

Figure 1.1: An Air Force RQ-4 Global Hawk UAV

The most critical component in an autopilot is the attitude estimator, which takes sensor readings
and extrapolates an aircraft’s attitude (e.g., the Euler angles roll, pitch, and yaw). Until recently this required
expensive navigation-grade sensors, but advances in commercial microelectromechanical systems (MEMS)
sensor technology are providing a low-cost alternative. These MEMS sensors perform poorly compared to

their their navigation-grade counterparts but with sophisticated filtering they can be successfully utilized in

an attitude estimator for a small UAV.

The sensor filtering techniques typically implemented require significant processing power. A
compromise must be made between a bulky, power-hungry embedded system like a PC/104, and a small low-
power microcontroller which sacrifices attitude estimation performance. This thesis presents a sophisticated
attitude estimation algorithm which is capable of running on a 16-bit microcontroller at 100 Hz without

sacrificing performance.

1.1 SLUGS

The estimation algorithm was developed for the Santa Cruz Low-cost UAV GNC System (SLUGS)
(see Figure 1.2(a)). The goal of the SLUGS project is to provide a versatile, robust autopilot board suitable
for research in small UAVs. The sensors utilized by SLUGS are a Global Positioning System (GPS) module, a
MEMS barometer, and three axes each of magnetic field sensors, MEMS accelerometers, and MEMS angular
rate sensors (rate gyros). SLUGS utilizes two processors: a sensor microcontroller which takes sensors
readings and performs attitude estimation, and a control microcontroller which takes the estimated attitude

and executes control laws (see Figures 1.2(b) and A.1).

Optional Devices Exp Sensor/INS RS2a2
Daughterboards MCU F——
Radio Modem
Communication
and Control MU, "9232

45

il

=

(a) SLUGS mounted in aircraft (b) SLUGSV1 block diagram

Figure 1.2: The SLUGS autopilot

Both microcontrollers are easily programmable in Simulink (see Figure 1.3) which dramatically

reduces development overhead by allowing rapid implementation and reconfiguration of control and

estimation architectures.

broader scientific community as well as the hobbyist community.

g bogd
Configure Modal for &
43PIC Target Compile for d=PIC 3}&"32%% Interface .
(double-clik) (double-olick) o0 e TxMatlab o Mag Rest Wiita!
Configuie Modal T T— o bh ol 1o opan | oo
dsFIc Graphical interiave
Driva SPI S5L High
C function call

SLUGS will soon be made open source, making UAV research accessible to a

€ functian call ‘ C function call I

wartinit ‘

C function call
gpsinit

loggerlnit spibasterinit o]
S initialize UART 1 for Initialize Data Intalize SP1 Master
ops Loggar
Decoder " C function call Wiag Reset Mag Reset iite
protPaerinit
Initialize Data
ons) Protocol Paser IR
5,
oL D 51658 sens Euer_har '
p uh- o B g
o 8 (s
2
I B B> 615 Ehncsen. i) posticn b LYY [Fosiion>-
i
b Vhed_hat
e o6 [AR [18 [Firatay>
a_pias -
ham Log - irgs [
ugts, ‘éﬂﬁ 9_bizs
o Fanostiss
- ”MB- unfitered_euler (i QNRE]
oo aive Joa 110
Debug R O win Jog
o
R TE
SensorData 0 Jluins To Control
Position Afituda Filier Mcu
doue)
] ST
i .
G5 by u i irt 16
sl i g [i
B o aop ol eio2
By EL uirt! irefis
H.m} L [osrar "‘ Int10 it 16 3
Disgnostic

€5 Bytes (L0

Control Surface Input

Figure 1.3: Programming the microcontroller in Simulink

The key to making SLUGS successful is having reliable attitude estimation. In Chapter 2 I describe
the issues associated with utilizing inexpensive MEMS sensors, and present the Kalman filter as a robust
sensor fusion technique. In Chapters 3 and 4 I derive the static and dynamic equations which describe
attitude and spacial rotations. In Chapter 5 I implement these equations in a Kalman filter, and in Chapter

6 I present the simulation, benchtop, and flight results of my algorithm.

2 Kalman Filtering

2.1 Statement of the Problem

In two dimensions a frame rotation is performed using the rotation matrix

u cos(a) sin(a) u

_ , (2.1)
v —sin(a) cos(a) v
where (u,v) is a vector expressed in frame (z,y), (u',v’) is the same vector expressed in frame (z',y’), and
« is the angle between the two frames (see Figure 2.1). The angle o contains the information needed to
fully specify the attitude of frame (z',y’) with respect to (x,y). It should be clear that a counter-clockwise
rotation of frame (2/,y’) with respect to (z,y) is equivalent to a clockwise rotation of vector (u’,v") within

frame (a/,y").

y' Y

(u,v)/((u',v")

Figure 2.1: Two dimensional vector rotation

2.1.1 Filtering Accelerometers

Because accelerometers sense the acceleration due to gravity which always points down, one might

be tempted to write

21 _ cos(er) sin(a) 0 (2.2)
29 —sin(a) cos(a) g

21 _ gsin(a) | 23)
29 g cos(a)

where 7 is the accelerometer measurement (in frame (2’,y’)). One could then solve equation (2.3) for a,
yielding
o arcsin (%)
= (2.4)
e arccos (%)

However, accelerometers measure inertial acceleration in addition to gravity. The actual measured signal
would therefore be

z1 _ cos(a) sin(«) A, | 25)

29 —sin(a) cos(a) Ay, +g

where [A, A,]” is the sensor’s inertial acceleration in frame (z,y). Whenever the sensor experienced an
inertial acceleration, equation (2.4) would be invalid and the computed result for o would be incorrect.

If the expected acceleration in this case [4, A,]7 was expected to be random and Gaussian, it could
be treated as noise and filtered out. Figure 2.2 shows a simulation of a mass on a spring with dampening.
The available position measurements are noisy so a low-pass filter is applied. Since a low-pass filter is a
weighted average of past data, its output tends to lag behind the true state. This phase lag is unacceptable

in an autopilot system so another solution must be found.

2.1.2 Integrating Rate Gyros
Another tempting way of tracking « is by integrating a rate gyro output z,. One might write

2,(t) = a(t) (2.6)

/ 2o (T)dT = a(t). (2.7)
0

spring data with filtering =frue
® 5 | | | | - raw measurements

—lowpassed

amplitude
o

time (seconds)

Figure 2.2: Simulation of a spring with dampening. The raw measurements are very noisy so a low-pass
filter is applied for smoothing, which causes a phase delay.

However, the gyro output is offset by a small drifting bias, so the true sensor equations are

2, (t) = a(t) + b(t) (2.8)
t t
/ zu(T)dT = a(t) —|—/ b(T)dr. (2.9)
0 0
Figure 2.3 shows the same simulation as before, a mass on a spring, but this time a velocity sensor (with an
exaggerated bias) is integrated to extract position. Because of the bias an error is integrated over time.
Integrating rate gyros results in an accumulated error, but there is no phase delay. Filtering

accelerometers results in no accumulated error but a significant phase delay. The rest of the chapter will

discuss how two complementary sensors such as these can be incorporated using a dynamically-weighted

recursive least-squares algorithm called a Kalman filter.

2.2 The Observer

An ideal discrete dynamic system is modeled by the difference equation

Ty = fr—1(Tr—1), (2.10)

—true

spring data with filtering
' ‘ ’ —integrate velocity

T

amplitude

time (seconds)

Figure 2.3: Simulation
position. Bias drift on
estimate.

of a spring with dampening. A non-ideal velocity sensor is integrated to extract
the velocity sensor is also integrated, causing an increasing error on the position

where & is known as the state of the system (usually just called the "state”). In a physical system with

disturbances it is more accurate to include a system noise term

Ty = fo—1(Tu-1) + Wr—1 (2.11)

i ~ N(0, Q). (2.12)

The notation W, ~ N(0,Qy) specifies that) is randomly distributed with a Gaussian probability

distribution of covariance Q).

In general, one does not have direct access to the value of &y, but must measure it with sensors

which are inherently noisy. The measurement equation is written

Z) = hk(fk) + Uy (2.13)

Uy, NN(O,Rk). (2.14)

The complete system is represented in block form in Figure 2.4(a). Note that the unit delay operator 2~ is

standard notation, and should not confused with the sensor measurement.

One way of estimating the state &y is by forming a virtual system called an observer. The observer

xAk—l Xy (—) . Zy

W |
Xy ..
f z i h “k
I =l |4
=
(a) The physical dynamical system (b) The observer in parallel with the physical system

Xi(—) Jhl z,

(¢) The measurements differ, and a state error is calculated (d) The state error is used to correct the state estimate

Figure 2.4: Formation of the observer

has virtual state Zj, virtual measurements Zx, and obeys the same equations as the real system:

T = fr-1(Tr-1) (2.15)

2 = hk(i’k> (2.16)

The observer is usually run on a computer in real time, in parallel with the real system (see Figure 2.4(b)).

Because of the system noise W, the a priori propagated state Zx(—) differs from the true state 7y,
and virtual measurement Z; does not agree with the actual measurement zj,. Feedback gain K}, is formed to
estimate the state error Afy = Ty — &y, based on the measurement error Zj, — 2 (see Figure 2.4(c)). Finally,

this error is used to correct the observer’s state, forming the a posteriori corrected state Zx(+) (see Figure

2.4(d)).

2.3 The Kalman Filter

The expectation value of the state error Ay is known as the covariance of the state, written as
P, = ([T — 23] [Z — 21]7). (2.17)

By analyzing the system dynamics f(Z), the expected system and sensor noise covariances Qi and Ry, and
the measurement function h(Z), an optimal feedback gain Kj can be derived to minimize Py. For linear
systems this is known as the Kalman filter and was first presented in 1960 by Kalman[1]. The implementation

equations for a linear system, adapted from [2] and [3], are summarized in Table 2.1.

System dynamics Ty = Op_1Tp_1 + Wr_1

Ujk ~ N(O7 Qk)

Measurement Zr = HpZp + Uk
U ~ N (0, Ry,)

Covariance Pk = 5([fk — ik][fk - SACk]T)
State propagation Tp(—) = Pp_1@p—1(+)
Predicted measurement 2k = Hipdp(—)

State covariance propagation Py(—) = ®p_1Pp_1(+)PL | + Qr—1

Feedback gain Ky = Po(—)HI (H.Po(—)HL + Ry,) 7t
State update Zp(+) = &u(—) + Ki(zk — 2x)
State covariance update Py(+) = (I — KpHy)Pr(—)

Table 2.1: Discrete Kalman filter implementation equations

The state estimate and covariance are propagated at every time step, but in many systems
measurements are only sporadically available. In this case the state covariance grows for many time steps
as the estimated state diverges from the true state. When a measurement becomes available, the feedback
gain K is calculated, the state is corrected, and the state covariance is updated (reduced) accordingly.

In Figure 2.5 a Kalman filter is applied to the previous dampened spring example. The 1-o bound

10

on the position covariance is overlaid in green. As the filter converges the covariance tightens accordingly.
The dramatic improvement in goodness of fit over the previously presented techniques (low-passing and

integrating velocity) highlights the usefulness of the Kalman filter.

standard deviation
=true
T - ° raw measurements

spring data with filtering

amplitude

time (seconds)

Figure 2.5: Kalman filter applied to spring with dampening and noisy measurements. The 1-o bound on the
position covariance shrinks as the filter converges.

2.3.1 The Extended Kalman Filter

The Kalman filter has been applied to nonlinear systems in many different ways. One of the most
straightforward techniques is to linearize the system dynamics and the measurement function around the
expected state Ty(—), and then apply the Kalman filter as normal. This is knows as extended Kalman
filtering and the implementation equations, adapted from [2], are presented in Table 2.2.

With the extended Kalman filter we now have the necessary machinery to dynamically estimate
attitude and drifting gyro biases, as long as they are modeled as states in our dynamical system. Next the

three-dimensional attitude dynamic and measurement equations will be derived.

11

System dynamics Ty = fro—1(Tr—1) + W1
wy, ~ N (0, Qk
Measurement Zk = hi(Zx) + Uk
i ~ N(0, Ry,)
Covariance Py = E([Tk — 2k][Th — 2x]T)
State propagation p(=) = fe—1(Zr—1(+))
Ofr_
Dynamics linearization b1 = frma
or |,._»
=& _1(+)
Predicted measurement Zp = hi(2x(—))
h
Measurement linearization H;, = Q
Oz r=ap(—)

State covariance propagation Py(—) = ®_1Pr_1(+)PL_ | + Qr—1

Feedback gain Ky = Po(—)HI (HpP.(—)H! + R)™!
State update Zp(+) = &k (=) + Ki(zi — 2x)
State covariance update Py(+) = — KyHy)Pe(—)

Table 2.2: Extended Kalman filter implementation equations

12

3 Attitude and Spatial Rotations

3.1 Introduction

A rigid body’s attitude is its orientation relative to some reference frame such as level Earth. There
are several equivalent mathematical representations of attitude and the relevant ones are discussed in this
chapter.

In this thesis the “Earth frame” or “local Earth frame” refers to the north-east-down (NED) frame,
where Z points due north, ¥ points due east, and 2 points to the center of the Earth (which is assumed here
to be spherical and of radially symmetric density). The body frame refers to the frame of the aircraft where

Z points out the nose, ¢ points out of the right wing, and 2z’ points down from the belly (see Figure 3.1).

Figure 3.1: Earth and body reference frames. The Earth (NED) axes are (z,y,2) and the body axes are
(', 2").

The NED frame’s simplicity and the fact that gravity always points down makes this coordinate

system useful, but caution must be exercised when integrating dynamics over long distances. A particle

13

could travel a unit distance north, west, south, and then east, and not arrive back where it started (see
Figure 3.2). This is not a concern for us because this attitude estimator is being developed for a UAV with

relatively short range.

Figure 3.2: Nonlinearity in the NED frame. A particle travels a unit distance north, west, south, and then
east, but does not arrive where it started.

3.2 Euler Angles

The aerospace Euler angles are probably the most easily accessible representation of attitude.
They are known as yaw/heading, pitch, and roll, or ¢, 6, and ¢ (see Figure 3.3). The Euler angles are
useful because the individual angles have intuitive significance to pilots. For example, navigation is done by

tracking a heading ¢, and climbing/descending can be done with a combination of throttle and 6 control.

Figure 3.3: The Euler angles

14

The three dimensional generalization of the rotation

o cos(aw) sin(a) u
= (3.1)
v —sin(a) cos(a) v
is
U cos(¢) sin(y) 0 Ue
vy | = | —sin(y) cos(yp) 0 Ve | (32)
w1 0 0 1 We

where (e, Ve, w,) is a vector in the Earth frame and (u;,v1,w;) is that vector in an intermediate frame

(21,91, 21). This represents a rotation of ¢ about the original z-axis (see Figure 3.4(a)).

¢
e o= R
Yzy/xy zy/xy zV/X

(a) ¥ (b) 0 (c)

Figure 3.4: The 3-2-1 Euler angle rotation sequence

The next rotation (6) is taken about the intermediate y;-axis, which is out the aircraft’s right wing

after the ¢ rotation and before the ¢ rotation (see Figure 3.4(b)). The rotation matrix is

Ug cos(f) 0 —sin(6) Uy
vy | = 0 1 0 |]w |- (3-3)
wo sin(d) 0 cos(6) wq

where (ug,v9,wsy) is the vector in a second intermediate frame (za, 9, 22). The final rotation (¢) is taken

about the intermediate 5 axis, which points out the aircraft’s nose (see Figure 3.4(c)). The rotation matrix

Up 1 0 0 u2
v | = 0 cos(¢p) sin(¢) vy | > (3.4)

wp 0 —sin(¢p) cos(¢) wo

15

where (up,vp, wp) is the vector in the final body frame (xp,yp, 25). Combining equations (3.2), (3.3), and

(3.4) yields

Up 1 0 0 cos(d) 0 —sin(h) cos(¢) sin(yp) 0 Ue
v | = 0 cos(¢) sin(g) 01 0 —sin(y) cos(y) 0 ve | (3.5)
wp 0 —sin(¢) cos(d) sin(d) 0 cos(f) 0 0 1 We

which can be multiplied out yielding

up cos(0) cos(v)) cos(0) sin(v)) — sin(6) Ue

vp | = | cos(y)sin(f)sin(¢) — cos(d)sin(vp) cos(¢) cos(vp) + sin(f) sin(¢p) sin(yp) cos(f) sin(¢) Ve

wp cos(¢) cos() sin(f) + sin(¢) sin(yp) — cos(1)) sin(@) + cos(¢) sin(f) sin(v)) cos(9) cos(¢) We
(3.6)

The matrix in equation (3.6) rotates vectors from the NED frame to the body frame, and is expressed

compactly as

Up Ue
Vp = T(¢a 9, ¢) Ve . (37)
Wy We

There are singularities in equation (3.6) when the aircraft’s nose is pointed straight up or down (i.e., in
the negative or positive z direction). This is shown by letting 6 approach g in (3.6) and then applying

trigonometric identities, yielding

0 0 -1
GILm% T(6,0,9) = | sin(p —¢) cos(p—1) 0 |- (3.8)

cos(¢p —) —sin(p—v¢) O
Therefore, when the aircraft pitches straight up, the heading (¢) and roll (¢) become indistinguishable. In
the real world an airplane could never have a pitch of exactly § = g, but in a real flight control system the
computer would be dividing very small numbers for 6 close to g, and very small errors would rapidly grow

into significant ones.

The advantage of using Euler angles for attitude representation is that they are intuitive and simple

to visualize. Drawbacks include the singularities and the relative computational complexity of computing the

16

derivatives of equation (3.6) (which are transcendental) for implementation in the extended Kalman filter.

The system dynamics (which are derived in Chapter 4) are also relatively computationally complex.

3.3 Direction Cosine Matrix

The Direction Cosine Matrix (DCM) is a 3x3 matrix which rotates a vector from one reference

frame into another, and is fundamentally defined as

The components 7; ; have already been derived as a function of Euler angles in equation (3.6).
For a matrix to be a rotation matrix it must rotate vectors while preserving their magnitude, which

is equivalent to saying that for rotation matrix R

|5]? = [7[? (3.10)

RTR=1. (3.11)

From equation (3.11) the inverse of rotation matrix R is its transpose so it is orthonormal.

While a DCM can itself be used to fully represent an aircraft’s attitude, I personally have found it
to be most useful as a tool within a different representation of attitude, i.e., it is simpler to use the vector
[# 6 ¥]T to represent attitude, and then compute the DCM using equation (3.6) when it is necessary to

rotate a vector from one frame to another.

17

3.4 Axis and Angle of Rotation

Euler’s rotation theorem states that any sequence of rotations (such as the 3-2-1 Euler angle
sequence in equation (3.5)) can be expressed as a single rotation of angle « about a certain axis & (see

Figure 3.5)[4].

Figure 3.5: Generalized rotation axis. Any rotation sequence can be expressed as a single rotation of angle
« about the Euler axis 7.

To derive the general rotation axis, first consider the special case of the rotation about the z-axis

Up cos(yp) sin(y) 0 Ue U cos()) + v, sin(¢))
v | = | —sin(y) cos(v) 0 Ve | = | —uesin(y) + ve cos(y) | - (3.12)
w, 0 0 1) \w we

It is clear that the and y components of vector [u. ve w,]T are rotated while the z component is unaffected.
Therefore the only vector that would be unaffected by a z-axis rotation is a vector with only a z component.
It is a general result that a vector parallel to a given axis of rotation is invariant under that rotation. Another
way of stating this is that the axis of rotation of a matrix T is the eigenvector of T associated with eigenvalue
A=1.1

The full derivation of the angle of rotation about the generalized axis is borrowed from [5]. The

1The two requirements for a matrix to be a rotation matrix are that it orthogonal and that it has determinant equal to 1.
From this it can be shown that one of its eigenvalues must be 1. For a complete discussion see Chapter 3 of [5].

18

general rotation matrix 7T is factored into
cos(aw) sin(a) 0
T=R'AR=R"| _ sin(a) cos(a) 0 | R (3.13)
0 0 1

Reading the rotations in equation (3.13) from right to left, matrix R first rotates the frame so that the new
z-axis is parallel to the axis of rotation &. Matrix A then rotates the frame an angle of a about the new
z-axis (which is &@). Last, RT undoes the original R rotation, restoring the original coordinate system plus
the rotation of o about &.

Since this method always works, every rotation matrix can be factored into this form. Luckily it
is unnecessary to ever perform this factorization. Taking the trace of matrix T, remembering that rotation

matrices’ inverses are their transposes, and using the identity trace(XY) = trace(Y X), yields

trace(T) = trace(RT AR) (3.14)
trace(T) = trace(RT (AR))
trace(T) = trace((AR)RT)
trace(T) = trace(A(RRT))
trace(T) = trace(A(I))
trace(T) = trace(A)

cos(a) sin(a) 0
trace(T) = trace(| —sin(a) cos(a) 0 |)

0 0 1

trace(T) =1+ 2 cos(a)

trace(T) — 1) . (3.15)

= arccos
(2

We now have a general formula for the angle of rotation about the general axis. In the next section we will

see how this general axis and angle can be elegantly utilized for attitude representation and spacial rotation.

19

3.5 Quaternions

Quaternions are hyper-complex numbers of rank 4. A quaternion g can be expressed as

q0
q1
q=qo+iq +jg2 +kgs =

q2

q3
where

90,91, 92,93 € R,
i’ =j =k’ =ijk = 1,

and

ij=—ji=k
jk=-kj=1i
ki = —ik = j.

A quaternion’s conjugate is defined as

¢ =qo —iq1 — jg2 — kgs.

(3.16)

(3.17)

Multiplication between two quaternions g and p is notated ¢ ® p and is performed as expected.

20

Keeping in mind that i, j, and k are non-commutative, distributing out terms and rearranging yields

q®@p = (g0 +iq + g2 +kaz)(po + ip1 + jp2 + kps)
q®p = qo(po +ip1 + jp2 + kp3z) + iqi(po + ip1 + jp2 + kps)
+Ja2(po + ip1 + jp2 + kps) + kgz(po + ip1 + jp2 + kps)
q®@p = qo(po +ip1 + jp2 + kps) + q1(ipo + iip1 + ijp2 + ikps)
+ q2(jpo + jip1 + jip2 + jkps) + qs(kpo + kipy + kjpa + kkps)
q®p = qo(po +ip1 + jp2 + kps) + q1(ipo — p1 + kp2 — jps3)
+ q2(jpo — kp1 — p2 +ips) + g3(kpo + jp1 — ip2 — p3)
q®p=qopo — @1P1 — G2P2 — q3p3 + qo(ip1 + jp2 + kps) + po(iq1 + jg2 + kg3) (3.18)

+1(q2ps — qsp2) +j(—q1ps + qsp1) + k(q1p2 — q2p1).

Treating a quaternion ¢ as a having scalar and vector parts

do
Uhl 4o
q= = : (3.19)
a2 q
a3
lets equation (3.18) be rewritten as
q®p=qopo — 7P+ qop + poq + 7 X P, (3.20)

which is an efficient formula for quaternion multiplication. It is also clear from the cross-product term in
equation (3.20) that quaternions do not commute under multiplication, i.e., ¢ ® p # p ® q.

A quaternion’s norm is notated |g| and defined as

ld=vVa®q, (3.21)

21

which can be simplified using equation (3.20):

lgl = Va* ®q

|
&

= &~ (-0 T+ i+ w(~D) + (D) x

= \Jad + 7 0+ (0d — qod) — 7%

=\ +q-q

lal = \/q3+q%+q§ +43 (3.22)

It is extremely useful to require that a quaternion be normalized,

\/q8+tﬁ+q§+q§ =1, (3.23)

and for the rest of the paper we will assume this is the case. (In fact, it is a convention that all rotation

quaternions are normalized.) One immediate benefit of this is that a quaternion’s conjugate is its inverse:
" ©4=q®q" =q5+qi +a5+a3 =1 (3.24)

It is now stated (and will shortly be verified) that the quaternion rotation operator is

=q¢ ® ®q, (3.25)

22

which through tedious algebra can be simplified to

0
0l (245 + 247 — D)ve, + (24192 + 2G043)ve, + (20193 — 2G0G2)ve,
Ty (29192 — 29043)ve, + (245 + 265 — 1)ve, + (24203 + 2041) Ve,
(29193 + 2q0g2)ve, + (24243 — 2G0q1) Ve, + (265 + 243 — 1)ve,
0
0) | [2a6+2af—1 2q1a2+ 29003 20193 — 20042
o 20102 — 2093 203 +2¢3 — 1 2q23 + 2qoqr | Ve
2q1q3 +290q2 20293 — 2qoq1 245 +2¢5 — 1

which implies that

203 +2¢7 — 1 2q1g2 + 29093 29143 — 2q0q2

—

2¢193 +2q0q> 2g2q3 — 2qoq1 2q3 + 2q3 — 1

We now have the DCM as a function of ¢:
205 +2¢7 =1 2q1g2 + 29093 29193 — 2q0G2
T(@) = | 29192 — 29095 203 +2¢3 =1 24245 + 2q0mn

2¢193 + 29092 2q2q3 — 2qoq1 2q% +2¢3 — 1

The eigenvalues of T'(¢) are

@+ad+d+ad
A= @-d-d-d+20iVid+d+a |

@-at— a3 — B —20iVE+E+ ¢

U = | 2q1g2 — 29093 243 +2¢3 — 1 24203 + 2q0q1 | Ve-

(3.26)

(3.27)

(3.28)

so with the normalization condition in equation (3.23), the first eigenvalue of T'(¢) is 1, which is a requirement

for T'(¢q) to be the DCM. The other requirement is that T'(¢) is orthogonal, which is easily verified by plugging

in T(q)TT(q), yielding the identity matrix (the tedious algebra is omitted).

Now that it is confirmed that T'(q) is a rotation matrix, the general angle of rotation « is derived

23

by plugging equation (3.27) into (3.15) yielding

2

(2¢3 + 243 — 1) + (2¢3 + 243 — 1) + (24§ + 245 — 1) — 1)
2

trace (T(q)) — 1)

Q. = arccos (

Q. = arccos (

Q = arccos (2q§ + (qg + qf + q% + qg) - 2)

o = arccos(2qa — 1)

o cos(a) +1
QO - 2
qo = cos (%) (3.29)
a = 2arccos(qo)- (3.30)

The general axis of rotation & is derived by taking the eigenvector associated with eigenvalue A = 1. The

eigenvector turns out to be [g1 ¢2 Q3]T S0 ¢ is now known up to a scaling constant, represented as
(3.31)

Combining equations (3.29) and (3.31) yields

q= ; (3.32)

and the normalization condition |g| = 1 is used on equation (3.32) to solve for the scaling constant c:

1=’ =@ +a+&+d

>2 o |a|> <cr’

<

)2+<Cf’5>2

||
/-\
RS

S

||
/\
o Q
N———
[V

|

o

[\
/
q
o +
Qu Q

<
|

q
v

Il

o

o

]
/N
() e}
N——
[V}

|

o

[V
T
&\&
v} [V
N——

c=sin (%) (3.33)

24

The attitude is therefore fully represented by the attitude quaternion

cos (%)
sin (3) &
¢ = 22l (3.34)
sin (3) 7
sin (%) %
where & and « are the general axis and angle of rotation.
If ¢ and p are both quaternions, applying two subsequent rotations to a frame is written
0 0
PO e ®qlOp=(P 9q¢)® ®(q®p) (3.35)
Ve Ve
. 0
=(®p) ® ®(q®p) (3.36)
Ve

so it is clear that quaternion right-multiplication is equivalent to subsequent rotations. This can be written

as

r=q®p, (3.37)
where rotating by ¢ and then by p is equivalent to rotating by r. Equivalent forms of this are

S (3.38)

p=q @ (3.39)

25

3.6 The Error Quaternion

The following rotation sequence consists of a large rotation represented by the quaternion ¢, followed

by a small rotation represented by the quaternion p:

(205 — 1) +2p7 2p1p2 +2pops 2p1p3 — 2pop2
Ub = | 2pip2 — 2pops (2p3 — 1) +2p3 2paps + 2pop:
2p1ps + 2pop2 2paps — 2pop1 (203 — 1) + 23

263 —1)+2¢ 2012 +2q003 20143 — 2002

212 — 2q0q3 (2¢2 — 1) + 242 2q2q3 + 2qoq1 | Ve (3:40)

2¢193 + 2002 2g2q3 — 2qoq1 (2¢% — 1) + 243

Since the quaternion

Do cos (%)
P1 sin () &
b= _ 2/ 191 (3.41)
| [
3 sin (%) I%zl
represents a rotation of small «, it can be linearized as
1
€1
p= (3.42)
€2

€3

26

and the DCM becomes

1+ e 2¢€1€2 + 263 2€1€3 — 2¢€ (2¢2 —1)+2¢F 2192+ 29093 20193 — 2q0q2
T=126— 23 1+22 2e0e3 + 26, 2192 — 2q0g3 (23 — 1) +2¢2 2¢2q3 + 201
2e1€3 + 2e2 2epe3 — 261 1+ 263 20193 + 20092 242q3 — 2q0q1 (25 — 1) + 243

(3.43)

1 2e3 —2e (22 —1)+2¢F 2q1g2+2q093 2q1q3 — 2q0q2

~—25 1 2¢ 20192 — 2903 (2¢5 — 1)+ 245 2q2q3 + 2qoqa (3.44)
2 —2¢ 1 20193 + 29002 2q2q3 — 2q0q1 (243 — 1) + 243

Another way of writing this is

and we will see later how this can be extremely useful.

€1

€2

€3

; (3.46)

27

4 Attitude Dynamics

In order to understand the mechanics of spacial rotations it is necessary to derive the differential
equations which relate attitude to a body frames’s rate of rotation & (which in this thesis is always represented

in the body frame). Using Euler angles for example, the equation required is

o Wa
d
p W

Before we are able to derive F' we must think more about the meaning of a derivative in a non-inertial frame.

4.1 Equations of Motion in Rotating Reference Frames

There are often counter-intuitive results in dynamics in non-inertial reference frames. For example,
a person riding in a circular track sees his or her velocity vector as constant and pointing straight forward (see
Figure 4.1(a)). Since acceleration is usually the derivative of velocity, one might guess that for this constant
body velocity one would experience no acceleration. However, the test pilots who ride the 20G centrifuge
in Figure 4.1(b) would probably disagree! We must therefore exercise caution when taking derivatives in
rotating frames.

Consider the special case of rotation parallel to the x-y plane where the frame is rotating with

(a) Free body diagram of particle in

circular motion.

(b) The 20G centrifuge at NASA’s Ames Research Center.

28

Figure 4.1: Dynamics in a rotating reference frame. Even though the velocity vector in the body frame is
unchanging, mass in that frame experiences acceleration.

angular velocity @ = [0 0 w,]”. The coordinate rotation equation is

/ =

'LU/

cos(w,t)

0

— sin(w,t)

sin(w,t) 0 u
cos(w,t) 0 v
0 1 w

Taking the derivative of both sides with respect to time yields

a
dt | Y

d_u'
dt

d_’U'
dt

dw’
dt

d_’u,l
dt

dv’
dt

dw’
dt

du’
dt

dv’
dt

dw’
dt

cos(w:t) sin(w:t)
d
=7 | | —sin(w:t) cos(w.?)
0 0

cos(w.t) sin(wst) 0

= [—sin(w:t) cos(w:t) 0
0 o 1
cos(w.t) sin(w:t) 0

= | —sin(w.t) cos(w.t) 0
0 0 1
cos(wzt) sin(w.t) 0

= | —sin(w:t) cos(w.t) 0
0 o 1

0

0

1

du
dt

dv
dt

dw
dt

du
dt

dv
dt

dw
dt

cos(w,t) sin(w,t) 0

7t | —sin(w:t) cos(w:t) 0

0 0 1

—w, sin(w,t) w, cos(w,t)

—w, cos(w,t) —w,sin(w,t)
0 0

—w, sin(w,t)u + w, cos(w,t)v

—w, cos(w,t)u — w, sin(w,t)v

w

0

0

1

u

u

(4.3)

(4.4)

(4.5)

(4.6)

%’ cos(w,t) sin(w,t) 0
%’ = | —sin(w,t) cos(w,t) 0O
%@tu/ 0 0 1
%/ cos(wyt) sin(w.t) 0
%’ = | —sin(w,t) cos(w,t) 0
%/ 0 0 1
%’ cos(w,t) sin(w,t) 0
‘C%" = | —sin(w,t) cos(w,t) 0
%/ 0 0 1

In fact, it is a general result that

dt
dvy

du
dt

dv
dt

dw
dt

du
dt

dv
dt

dw
dt

du
dt

dv
dt

dw
dt

=T

dat

29

0 —w, O cos(w,t)u + sin(w,t)v
“lw, 0 O — sin(w,t)u + cos(w,t)v
0 0 O w
0 —w, O u’
“|w, 0 O v
0 0 0 w'
o
— DX |y
W
dve .
prR
Lo _on,

where T is the DCM as usual, and is the skew-symmetric matrix (or cross product operator)

0 —w, wy
Q=0Ux = w, 0 —w,
—Wwy Wy 0
Another important result is
dv, d dv, dT dv,
—_— = — _’e: —_— 7_‘e:T7_Q_’
i a0 =T gt =Ty — S
dr
= E’D} = —Qu
dr
Eﬁe == 7QT65
dr
— =-QT.
dt
. . . . dy,
The real acceleration of the body (which would be used in Newton’s second law) is o
dve
the body frame is experienced as T' C;; :
dve
=T

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

—=, which in

(4.14)

30
ap = — + Q. 4.15
PTar T (4.15)
In the previous example (Figure 4.1) the velocity in the body frame @), is constant so it’s derivative is 0.
Since the rotation is about the negative z axis, @ = [0 0 — w]?. The measured acceleration in the body

frame is therefore

0 w O v
a=Q0=|_-w 0 0f]o (4.16)
0 0 0 0
0
ap = | —wov | - (4.17)
0

ay=1_"1, (4.18)

which is the familiar result in the correct direction.

4.2 Euler Angle Dynamics

It turns out that the Euler angle dynamics can be derived by inspection alone. Because the body
rotation rates @ = [w, w, w,|T are defined as instantaneous rotation rates about the z’, v/, and z’ axes
respectively (see Figure 4.2(d)), it can be observed from Figure 4.2(c) that ¢ is a rotation about the z’ axis.
6 is a rotation about an intermediate axis (see Figure 4.2(b)), so to project 6 onto the body frame it must
be rotated using the ¢ rotation. Likewise, 1/1 must be rotated about first #, and then ¢. This is written as

b 0 0

w

8

w =lo|+7Ts 0 +TyTy | 0 (4.19)

<

W, 0 0 P

31

(a) After the 9 rotation

(c) After the ¢ rotation (d) The body axes

Figure 4.2: The incremental axes in the 3-2-1 Euler rotation, and the final body axes

Wa) 1 0 0 0 1 0 0 cos(@) 0 —sin(0) 0
wy | =10 0 cos(p) sin(e) O(+] 0 cos(p) sin(e) 0 1 0 0
W, 0 0 —sin(¢) cos(o) 0 0 —sin(¢) cos(¢) sin(d) 0 cos(0) ¥

(4.20§

which can be simplified into

we 10 — sin(6) ¢
wy | =10 cos(@) cos(@)sin(e) | | 0 (4.21)
w; 0 —sin(¢) cos(d)cos(¢) | \ 4
and inverted yielding
) 1 sin(¢)tan(f) cos(¢)tan() | [w.
61=10 cos(o) —sin(@) Wy (4.22)
W 0 sin(¢)sec(d) cos(¢)sec(f) | \w:

Equation (4.22) is a system of three coupled, transcendental, nonlinear differential equations. They

cannot be solved in closed form but must be integrated numerically, entailing the computationally intensive

32

T
task of computing a number of transcendental functions. There are also singularities at 8 = :|:§ which can

cause cause a very rapid growth of errors. We will next use quaternions to solve these problems.

4.3 Quaternion Dynamics

As before, the DCM for the attitude quaternion is expressed as

(263 - 1) +2¢ 20102+ 2003 2q1q3 — 2q02
=1 20192 — 2003 (263 —1) 4263 2q2g3 +2q0q1 | Ve- (4.23)
20143 + 29002 2q2q3 — 2q0q1 (23 — 1) + 243
Combining equations (4.12), (4.13), and (4.23) yields
(203 — 1) +2¢7 2q1q2 +290g3 2q103 — 2002
% 20102 — 29093 (205 — 1) + 245 20203 + 290q1

2¢1q3 + 29092 2q2q3 — 2qoq1 (2¢3 — 1) + 243

0 w3 —w 2@ —1)+2¢7 20192+ 2903 29143 — 2q0g2
=| —ws 0 w1 2192 — 2q0q3 (243 — 1) +2¢3 2g2q3 + 2q0q1 (4.24)
wy —wi 0 20193 + 29002 29293 — 29001 (2g5 — 1) + 243
4q0Go + 4q1G1 2(qog3 + qoq3 + 12 + q1G2) 2 (—qog2 — qog2 + G193 + q1G3)
2 (—qogs — qoq3 + G1G2 + q1G2) 4qoqo + 4922 2 (doq1 + qoq1 + G293 + G243)
2(qog2 + qod2 + G1g3 + q1G3) 2 (—doq1 — QoG1 + G293 + 423) 4q04o + 44343
0 O (2¢5 = 1) +2¢7 2q1g2 +2q093 29143 — 2q0q2
=|-ws 0 wy 2192 — 2q0gs (245 — 1) + 23 2g2q3 + 2q0q1 | - (4.25)

wy —w; 0 20193 + 2902 2g2q3 — 2qoq1 (2¢% — 1) + 243

33

which can be rearranged algebraically into

qo 0 —wi —w2 -—ws
d |« 1|w O w3 —ws
dt T2

q2 wy —wz 0 w1

q3 w3 W —w1 0

q0
qQ 1[0 &7 qo
= - (4.26)
q2 J —wWX (j
g3

This dynamical equation is very elegant and is much simpler than the one for the Euler angles. There are

no singularities and it is computationally simple. Furthermore, for constant body rates &, equation (4.26)

is linear and can be solved in closed form yielding

cos | WAL _wn gy | lwlA
2 3] 2
. At At
i sin [‘w‘z } cos [‘w‘z }
q(t(] —+ At) = i i}
wa gip [WIAL) - ws gy | |wlAl
w] 2 |w] A
ws gip | @At w2 gip | lwlAt
lw] 2 |w] 2

where |w| = \/w? + w3 + w3.

4.4 Error Quaternion Dynamics

As before, the error quaternion DCM is

1 2¢e3 —2e9 (2¢2 — 1) +2¢3

T=1-2; 1 2¢; 29192 — 2q0qs3
2¢9 —2¢; 1 24193 + 2qoq2
=E-T,.

The time dependence is specified as

— @2 qip

[w] 2
w3 gin |w|At
|w] 2
cos [1@lAt]
2
. [lwiat]
_ w1 gy | 1@
[w] 2

2q192 + 2qoq3
(2¢5 — 1) + 243

2¢2q3 — 2q0q1

T(t) = B(t)T.

_ws oo [wlAt]

(@] Sin I 5 |

_ wa |w|At

o] Sin [—2
-2 fae), (427)

w1 o \w|At

@] Sin _72 |

[|w|At]

COS 5

24193 — 2qoq2
2q¢2q3 + 2qoq1 (4.28)

(2q5 — 1) + 243

(4.29)

(4.30)

We let the large rotation Ty be constant in time, and derive our dynamics using the linearized small

rotation:

Ort) = = (T() (4.31)

34

d
QEt)Ty, = 7 (E(t)To) (4.32)
d d
QEt)Ty = 7 (E(t))To + E(t)% (To) (4.33)
d
QE(t)Ty = 7 (E(t)) To (4.34)
d
QFE(t) = o (E(t)) (4.35)
0 w3 —W2 1 263 7262 0 263 7262
—wy 0w |2 1 20| = [-26 0 24 (4.36)
wo —wi 0 2¢0 —2€ 1 2¢y —2€1 0
which can easily be rearranged into
€1 % 0 0 w1
d 1
Zlel=10 % o Ws (4.37)
€3 0 0 % w3
and solved, yielding
1
€ = €_1 + iﬁk—lAt- (4.38)

This is the simplest dynamical attitude equation we will come across. We will soon see how this can be

utilized in an efficient extended Kalman filter.

35

5 Implementation Equations

The DCMs derived in Chapter 3 and the dynamics derived in Chapter 4 will now be used to derive
f,®, h, H, Q, and R, the functions needed to implement the extended Kalman filter equations from Chapter

2 (see Table 2.2). Working MATLAB implementations are provided in Appendix B.

5.1 Full Quaternion Filter

The first attitude estimation system developed for this project was an extended Kalman filter using
the full quaternion [go q1 g2 ¢3]7. The computational complexity of this filter prevented it from being used
in an embedded autopilot, which led to the use of the error quaternion filter. The original full quaternion
implementation is included here for completeness.

The state is & = [go0 ¢1 ¢2 ¢3 w1 w2 w3 by by bg]T where b is the gyro biases. The full

implementation is summarized in Table 2.2 and it is necessary to derive the state transfer functions f

and ®, the measurement functions h and H, and the noise covariances) and R.

5.1.1 State Transfer

Body rates & and gyro biases b are assumed to be random walk processes:

Gy = Gr—1 + We k-1 (5.1)

by = b1 + Wy 1. (5.2)

36

Equations (5.1), (5.2), and (4.27) are combined to form f:

At L
|w‘2 — 3 gip
| |w]

At] .
Iw\2 — 2 gin
] |w]

At .
IW‘Q Yigin
] |w]
|w|At] .

5 cos

|w]|At

|w]|At

[~}

|w]|At

no

|w]|At

q0,k

q1,k

g2,k

g3,k

7‘5201; (Atwwi (qrwy + gawg + ggwsg) cos

+ (‘IOAt“"2“’1 +2 (—‘12‘*’1“’2 —aq3wiw3 + a1 (wg +

[lwlat] _wi g [lwlat] wy
q0,k+1 cos | =5 oy Sin | % sin
Wy i | JwlAt] [w|At] ws o
q1,k+1 i sin | 5 cos | =5 = sin
wy i [wlAt] ws o [w]At]
42,k+1 i sin | =5 i sin | 5 cos
wa i | lwlAt] wy o [lwlat] Wy
q3,k+1] S |3 o] S 3 o] S i
W1 k+1 W1,k
W2 k+1 W2,k
W3 k41 w3,k
b1 k41 b1,k
b k+1 b,k
b3 k41 b3,k
Partial derivatives of f are taken to form ®
3 Atw i Atw . Atw
o[B wrsim[242] wpuim[AR] wgein[Age]
2 w w w
sin Atw sin Atw in Atw
5 fag)]l
wo sin[A2W ws Sin[Aéw] cos[AW} wy sin[Afw
w w 2 w
sin| Atw in| Atw sin| Atw
P = “3 £ 2 w2 s L 2 } “1 £ 2 } COS[AZEW}
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

— iy Atwwa(qrwr + a2ws + a3ws) cos [

2
+ (202 (02 + w8) + w2 (a0Atw? — 2(a1w1 + g3ws)))

%%Atwuu(qzwl + apwz — q1w3) cos [
+ (—wz (a28tw? + 20301 — 2q1w3) + 290 (wF + w

Siy Atwws(—agwy + a1ws + aows) cos [AL

+(—w2 <q3Atw2 — 2qpw1 + 2q0w3) + 201 (w} + w3)) sin[

0

1

0

+ (*QlAtu)le + 2 (q3w1w2 — gowiws + qq (w% + %))) sin [

2L‘%;»,Atwwl(qowl — q3wz + qaw3) cos [

ﬁgAle(qgm +aow2 — q1w3) COS[

+ (—qQAuﬂwl +2 <—q0w1w2 + qrwiws + a3 (w% + ug))) sin [%

- (quthwl +2 (qlwle + qowiws + q2 (w% + w%))

*72“1}3 Atwwz(giwy + agws + azws) cos |

Sy Atwws(agwr — agws + agwg) cos [

M%Atw%(*qztvl +a1w2 + qows) cos

1

[¢]

0

+ <2q2 (0F +w3) - (qlAth + 2ggwy — 2q3wo

723)3 Atwwg(ggw) + gowa — g1 w3) cos

ﬁi Atwwz(—g2w1 + q1w2 + qow3) COS[

0

0

1

— (201 («} + w3) + (a2atw? + 2q3w1 + 2qpw2

+ (203 (¢} + w3) + apAtwwg — 2(a1w1 + gawp)ws) sin [L]

+ (Zqo (0? +w3) — (s3atw? — 20001 + 2q1w2) w3) sin[L

)|

)
[
)

2
3) sin [AL

At

Atw
w

[

€

Atw

Atw
2

=

]

]

]

tw

5]
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

37

5.1.2 Measurement
Accelerometers

The accelerometers measure gravity and the inertial acceleration in the body frame

It was found to be most efficient to assume that tracking was accurate, i.e. §(—) ~ ¢, and then subtract the

GPS/barometer-calculated inertial acceleration from the accelerometer measurement, modifying equation

(5.5) to
T Zyps 0
Zaccels = T(Q) y - T(Cj) :ngs ~ T(q) 0 . (56)
zZ— g ébaro)

The barometer is used in the z-axis because it is much more accurate than GPS. The final accelerometer

measurement is therefore

(203 —1)+2¢} 2q1q2+2¢0a3 2q103 — 2¢0g2 0
Zaccels = 2¢192 — 24043 (2(]8 —-1)+ 2q% 2q2q3 + 2qoq1 0
2193 +200q2 2g2g3 — 2qoq1 (2¢% — 1) + 243 —g

—29(—q0q2 + ©143)

Zaccels = —29((]0(]1 + (12(]3) : (57)

—g (=1 + 2q3 +243)
Magnetometers
The magnetometers measure the local magnetic field B in the body frame:

B,
Zmags =T B, (5.8)

B.

Zmags =

Zmags —

Gyros

38

(263 —1)+2¢7 2q1q2 +290g3 2013 —2q0q2 | | Ba
20192 — 2q093 (2¢5 — 1) + 245 2q2g3 + 2qoqn B,
20193 +2g0q2 2q2q3 — 2qoq1 (245 — 1) + 243 B,
By (=14 2¢} + 2¢3) + 2By (q12 + q0q3) + 2B=(—qoq2 + q143)
By (=1 + 243 +2¢3) + 2B (q192 — qog3) + 2B-(q0q1 + 423) (5.9)

B. (=1 +2¢3 +243) + 2B, (qog2 + q1q3) + 2By(—qoq1 + 423)

The rate gyros measure the body rotation & plus bias b

Full Measurement

w1 + by
Z, = wo + by | - (5.10)

w3 + b3

Equations (5.7), (5.9), and (5.10) are combined to form the full measurement equation h

Zaccels
e (5.11)
Ze
—29(—qog2 + q13)
—29(qoq1 + q203)
—g (=1 + 243 +243)
By (—1+2¢3 + 2¢1) + 2By (q192 + qog3) + 2B.(—qoq2 + q143)
By (=14 2¢3 +24¢3) + 2B, (q12 — q0g3) + 2B-(qoq1 + q2q3) | - (5.12)

B. (=1 +2¢3 +243) + 2B.(q0g2 + q143) + 2By(—qoq1 + q243)
w1 + b1

wo + by

w3 + bs

39

Taking partial derivatives forms the linearized measurement function H

29q9 —2gq3 2990 —29gq71 0 [¢] 0 [¢] [¢] 0
—2gq1 —2g4qq —2gq3 —2gq9 0 0o 0 0 0o 0
—4gqq 0 0 —4gq3 O 0 0 0 0 o0
4Bzqo — 2Bzq2 + 2Byq3 4Bz q1 + 2Byq2 +2Bzq3 —2Bzqg + 2Byaq;y 2Byqo + 2Bzqy 0 0 0 0 0 0
H = 4Byqg +2Bzq1 — 2Bga3 2Bzqg +2Bzqo 2Bgqy +4Byqgz +2Bzq3 —2Bgqg +2Bzqp 0 0 0 0 0 0
4B.qg — 2Bya1 + 2Bzaz —2Byag + 2Bza3 2Bgaqg + 2Bya3 2Bgqy +2Byqa +4Bzg3 0O 0 0 0 0 O
0 0 o] 0 1 o] 0 1] 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1
(5.13)

5.1.3 Noise Covariance Matrices

The process noise covariance is assumed to be

Q= , (5.14)

where o, is the expected quaternion system noise, o,, is the random walk on the body rates, and o} is the
random walk on the gyro biases. oy, is identified off-line using static gyro data and o, is tuned for expected
real system dynamics. o, is time-dependent because a small rotation error in the airplane will couple
into the quaternion coefficients according to equation (4.27). This is fixed by using the error quaternion

implementation, but for now o, has been tuned with good results.

40

The sensor noise covariance is assumed to be

o2, 0 0 0 0 0 0 0 0
0 o2, O 0 0 0 0 0 o0
0 0 o2, O 0 0O 0 0 0
0 0 0 o2, O 0 0 0 0
R=1{ o 0 0 0 024 0 0 0 0] (5.15)
0 0 0 0 0 0%, 0 0 0
0 0 0 0 0 0 o2 0 0
0 0 0 0 0 0 0 o2 0
0 0 0 0 0 0 0 0 o2

where 0gccel, Omag, and o, are the standard deviations of the expected noise on the accelerometers,
magnetometers, and rate gyros respectively. 0,44 and o, can be identified off-line from static sensor data.
Oaceal 18 a more difficult because the accelerometer measurement has had GPS/barometer-calculated inertial
accelerations subtracted and that inertial acceleration has been rotated into the body frame using the a
priori attitude quaternion. In future research this will be reflected by a modification of R, but for now o4cce;
is tuned with good results.

This implementation is computationally simpler than an Euler angle implementation, but it is still

too intensive to run in floating point on a 16-bit microcontroller at a reasonable update rate.

5.2 Error Quaternion

A major change from the full quaternion filter is that the gyro integration process is separate from
the Kalman filter. The full quaternion ¢ = [go q1 g2 3] represents the attitude and it is propagated as the

a priori attitude ¢(—) using equation (4.27). When a GPS update becomes available the error quaternion is

41

initialized and defined as

€1
Qtrue = CI(—) &® (516)
€2

€3

from equation (3.46). Because the a priori attitude is taken as g(—), the a priori error quaternion is zero.
The Kalman filter is then used to estimate the error state € and gyro biases g, and the attitude quaternion

is updated by

i =ie| . (5.17)

€3

At this point the attitude quaternion is re-normalized.

5.2.1 State Transfer

In the full quaternion implementation, the body rates were modeled as a random walk process with
high noise. Since the gyro sensors have low noise, the Kalman filter weighs them with orders of magnitude
more trust than the expected body rotation states, and the body rotation rates essentially become the sensor
readings minus the bias.

To save processing power the error quaternion filter does this explicitly. The body rotation & is not
a state and it is assumed that the rate gyros are perfectly noiseless, so the body rotation becomes the gyro
sensor readings minus the gyro biases

—

G=3,-b (5.18)

The state for the error quaternion filter is therefore & = [e; €2 €3 by ba bg]T.
The biases are no longer modeled as random walks. Instead the first-order Gauss-Markov process

is used:

L (5.19)
T

42

b = ¢ bp_1 + w. (5.20)

This model is similar to a random walk on a short time scale ¢t << 7, but over a time scale ¢t ~ 7 the bias
will be attracted to a zero state. This model is a better approximation of sensor drift in this case.

From equations (4.38) and (5.20), the Kalman filter state propagation function f is

1
€1k €1,k—1 + sw1,k—14At
1
€2k €2,k—1 + sw2,k-1At
1
€3k €3k—1 1+ sw3 k14t
- b
N
b1 k e bik—1
N
ba e” 7 by j—1
A
bg,k € b3,k—1

which is modified by equation (5.18), becoming

1
€1k €1k—1+ 5(21,0-1 — b1p—1)AL
1
€2,k €ok—1+ 5(22,k—1 — bor—1)At
1
€3,k €311+ 5(23 k-1 — b3 r—1)At
_ , (5.21)
N
b1,k e 7 by k1
A
ba 1 e~ bak—1
N
b3k e 7 bar—1

A somewhat subtle point to be noted is that in this implementation, over a given time step the Gauss-Markov
modification affects the biases but is not coupled into the corresponding body rotation rates as defined in
equation (5.18). In this case the difference is negligible, and it may even be more correct this way depending

on your philosophical interpretation of equation (5.18).

43

Partial derivatives of equation (5.21) are taken to form ®

At
100 -4 o0 0
010 0o -£ 0
001 0 0o -4
P = (5.22)
000 5 0 0
000 0 e 0
000 O 0 e

which is used to propagate the state covariance even though the error state € is not being used to integrate
the gyros. This is appropriate so that the covariances on the error quaternion € will be correct when an
update occurs. This form of ® is much simpler than the previous one, and its sparseness is one of the key

factors in the error quaternion filter’s relative computational simplicity.

5.2.2 Measurement

Accelerometers

As before, the GPS/barometer-derived inertial acceleration is subtracted from the accelerometer

measurements
T Typs 0
Zaccels =T y - T(Cj) :‘jgps ~T 0 . (523)
Z— g ébaro —9g

From equation (3.43) the accelerometer measurement becomes
0
Zaccels =T | 0
-9
1 23 20| | 2 —1)+2¢ 2¢0a2+200 20103 — 29042 0
Zaccels = | —2e5 1 2¢; 20192 — 2q0q3 (2¢3 — 1) +2¢3 2¢ags + 2qoq 0 (5.24)

20 —2¢ 1 20193 + 2902 2g2q3 — 2qoq1 (2¢3 — 1) + 243 -9

44

—9 (20193 — 2q0q2) — 262 [(2¢3 — 1) + 243] + 2€3 [242g5 + 2q0q1])
Zaccels = | —g ([2q23 + 2q0@1] + 21 [(263 — 1) + 23] — 2€5 (2105 — 2q0¢2]) (5.25)

—g ([(24§ — 1) + 243] — 2€1 [2q2q3 + 2q0q1] + 2€2 [2q1q3 — 2q0g2])

Magnetometers

Similarly, the magnetometer measurements are

Zmags — T B

1 2es —2e (262 —1)+2¢7 2q1q2+2q0q3 2q1G3 — 29042 B,
Zmags = | —2e3 1 2¢; 20192 — 2q0q3 (243 — 1) +2¢3 2g2q3 + 2q0q B,

2 —2¢ 1 2193 + 29002 292q3 — 2qoq1 (2¢% — 1) + 243 B,

By (2(4142 + a093) — 4(—g9pq1 + 9293)e2 + 2 (71 + 243 + 2(1%) eg) + Bz (71 +24¢3 + 247 — 4(qpa2 + q1493)e2 + 4(q192 — qoq3)63)

+B: (2(—apaz + a1as) — 2 (—1+ 243 + 2¢3) ez + 4(qpa1 + azas)es)
Zmags _ By (2(qlq2 —aq0a3) +4(qpq2 + q1a3)e1 — 2 (71 + 2(18 + 2(1%) 63) + By (71 + 2q8 + Zq% + 4(—qpq1 + a293)e1 — 4(q192 + qoq3)<3>
+Bz (2(f10f11 +ag2q3) + 2 (—1 + 2‘13 + 211%) €1 —4(—qpaq2 + 111f13)‘3)

By (2(qoq2 + a143) — 4(g192 — 9pa3)el +2 (—1 + 24% + 2q%) 62) + By (2(—qoq1 + a2q3) — 2 (—1 + 2q(2) + 2q§> €1 +4(q192 + qoq3)62)

+Bz (71 + 2q(2) + 241% — 4(qp4q1 + 9293)e1 + 4(—agaz + q1q3)62)

(5.26)

Full Measurement
Equations (5.25) and (5.26) are combined to form the full measurement function h

N
Zaccels

h =

Zmags

-9 (12q143 — 2q0q2) — 2€2 [(2¢3 — 1) + 2¢3] + 2€3 (2243 + 2q0a1])
—9 (129203 + 290q1] + 261 [(2¢3 — 1) + 243] — 2€3 [2q13 — 2042])

—9 ([(25 — 1) + 243] — 2€1 [2q2q3 + 2q0q1] + 2€2 [2q143 — 2q042])
By (2(<11Q2 +apq3) — 4(—apa1 + g2q3)ez + 2 (*1 + 2q% + 2q%> €3> + Bz (*1 + 2!1% + 24% —4(qo92 + 9193)e2 + 4(q192 — QOQ3)63)
+Bz (2(*‘10‘12 +4q1493) — 2 (*1 + 20% + 20%) €2 + 4(q0q1 + 0243)53)
)

By (2(L11QQ — qpq3) +4(q0q2 + 9193)e1 — 2 (71 + 2‘18 + 2q%) 63) + By (71 + 2‘18 + 2(1% + 4(—qpq1 + 9293)e1 — 4(q192 + 90493)e3

+Bz (2(CIOQ1 +4g2493) +2 (*1 + 2q8 + 2‘1%) €1 — 4(—qpq2 + Q1Q3)63)

By (2(qoq2 +a1493) — 4(a1a2 — apagz)el + 2 (*1 + qu + 2qf) 62) + By (2(*110111 + a2a3) — 2 (71 + 2q(2) + 2q§> €1 +4(a1a2 + qoqs)eg)

+B2 (*1 +24¢3 + 243 — 4(qpq1 + 9293)e1 + 4(—qpa2 + q1t13)62)

(5.27)

45

Taking partial derivatives of equation (5.27) yields H

0 2g(—1+ 242 +243) —4g(qpq1 + a293)
—2g(—1+ 243 + 243) 0 49(—qpa2 + a1a3)
49(q091 + 92493) —4g(—qpa2 + 9193) 0
o —4Bgz (9092 + 9193) — 4By (—aq091 + 92493) 2By (—1 + 262 + 2¢2) + 4Bz (a1a2 — 9043)
H = —2B(—1+ 2¢3 + 243) +4Bz(q0q1 + 9293)
4Bz (qpa2 + 9193) + 4By (—agq1 + q2493) o 7231(71+2q3+2<1f)74By(41q2+q0tI3)
+2B. (1 + 2¢3 + 24¢3) —4Bz(—q0a2 + q143)
72By(71+2q8+2q§)74Bz(0142*qms) 2Ba:(*1+2‘18+24%)+4By(41‘12+(IOQS) o
—4Bz(q04q1 + 9293) +4B:(—qpaq2 + q143)

Because the a priori error state is zero, the expected measurement is the same as in the full

quaternion filter

—29(—q092 + ©143)
—29(qoq1 + q293)

—g (14243 +243)

N>
Il

(5.29)
B, (—1+2¢2 4+ 2¢}) + 2By (q192 + q0g3) + 2B.(—qoq2 + q13)

By (—1+2¢3 +243) + 2B.(q192 — q043) + 2B (q0q1 + q243)

B. (=1 +2q¢3 +243) + 2B, (qog2 + q1q3) + 2By(—qoq1 + 423)
5.2.3 Noise Covariance Matrices

The process noise covariance is

Q= : (5.30)

0 0 0 0 0 o}
where oy, is the expected random walk term in the gyro biases’ Gauss-Markov drift, and o, is the expected
error state between the a priori and a posteriori attitudes. o (and 7) are identified off-line using the real
rate gyros. o includes a number of factors such as gyro gain error, gyro misalignment, unmodeled gyro

noise, etc., and is therefore tuned for optimal results.

46

The sensor noise covariance is

o2 ., 0 0 0 0 0
0 o2, O 0 0 0
0 0 o2, O 0 0
R= : (5.31)
0 0 0 024 O 0
0 0 0 0 02, O
0 0 0 0 0 o2

mag

where 04ccet and o,,q9 are the standard deviations of the expected noise on the accelerometers and
magnetometers respectively. 0,44 is identified off-line from static magnetometer data. As before, deriving
Taccal 18 difficult because of the subtraction of GPS/barometer-calculated inertial acceleration. o4cce; is again

tuned with good results.

5.2.4 Implementation Summary

The complete error quaternion extended Kalman filter implementation is written explicitly in Table

5.1. A working MATLAB implementation is provided in Appendix B.

5.3 100 Hz Measurement Quaternion Filter

The error quaternion filter is much more simple computationally than the full quaternion filter, but
it can be made to run significantly faster with a slight modification. The most computationally intensive
step in the extended Kalman filter equations is an n X n matrix inverse where n is the length of the
measurement Z. In the error quaternion filter this inverse is 6 x 6 which is very demanding for a small
microcontroller. The measurement quaternion filter is exactly the same as the error quaternion filter except
that the GPS/barometer, accelerometers, and magnetometers are used to form a direct measurement of the

error state €, and the measurement equation becomes

Zy = € + Uk (5.32)

T ~ N(0, Rp). (5.33)

47

equation (5.22)
equation (5.30)

equation (5.31)

Each time step

State propagation

State covariance
propagation:

- o b
w = Zu)k,l — Vk-1
[lwlAt wy [lw|At i | lwlAt w3 |w|At
cos) ~Tor sin 5 1o sin 5 o Sin 5
r}—l sin \w|2At cos |w\2At —3| sin |w\2At 7—‘“)2' sin ‘WLAt
qk(_) = wy i lwlAt _wy [lwlAt con [lwlAE 1 in | lwlAt qk—1
[w] 2 fwl 2 o 2 fw] 2
w3 | lwlAat w2 o[lwlAt _w1 g | wlAat cos \u'\At
[w] 2 [w] 2 Jw] 2 2
— At =
b, =e” 7 bp—1

Pu(=) = O 1P 1@ | + Qr

When new GPS measurement arrives

Predicted measurement:
Measurement linearization:

Feedback gain:

GPS acceleration correction:

State update:

Attitude quaternion update:

Quaternion re-normalization:

State covariance update:

%), from equation (5.29)
Hj, from equation (5.28)

K = Po(—)H! (HPo(—)HE + Ri)™*

. T
Z= |:Zacc - T(Q(_))fgps/barm Zmags

617k(+) 0
Ez,k(-i-) 0
esr(+) | 0 R
i) | = [bl | G2
ba.x(+) ba,k(—)
b3k (+) bsx(—)
1
S e1(+)
i(+)=d(-)® 6;(+)
e3(+)
B q(+)
1=

Table 5.1: Error quaternion filter implementation algorithm

48

Because the individual accelerometer and magnetometer sensor errors are propagated in a convoluted way
through the measurement of €, proper formation of Ry is the key to getting good performance with this

filter.

5.3.1 Measuring € Directly

If two non-parallel vectors are known in one frame, then from the noiseless measurement of those
vectors in another frame one can reconstruct the attitude of the rotated frame. This is described thoroughly
in [6], which also presents an efficient method for calculating the rotated frame’s attitude, represented as
the measurement quaternion. A summary of that method is presented, along with my modification for noisy
measurements.

The DCM is formulated using the error quaternion

Up1 1 263 —262 Vel
Vp2 = —263 1 261 T(Q) Ve2 . (534)
Up3 262 —261 1 Ve3

The expectation value of the vector in the body frame is

Dp1 Vel
te | =T(@) | ves | - (5.35)
D3 Ve3

The difference between the observed and expectation value of 7 is

Svp Up1 D1
soms | = | on | = | s (5.36)
Svps Ub3 Up3
1 2¢3 —2¢o Vel Vel
=25 1 2a |T@ | vy | =T | veo
2¢0 —2¢ 1 Ve3 Ve3

dvpy
51)172

(51)53

49

The expected accelerometer measurement 2, is

and the expected magnetometer measurement Z; is

These are combined with equation (5.37) yielding

_ 1 2¢5 —2e9 1 0 0
—2e3 1 2€q1 —10 1 O
2¢5 —2€¢1 1 0 0 1
0 2¢3 —2eg Vel
—2€3 0 2€1 T(q) Ve2
2¢5 —2€; 0 Ve3
0 2¢3 —2¢e9 Vp1
—2¢3 0 2€1 V2
2¢0 —2€; 0 Vp3
0 —20p3 202 €1
20p3 0 —20p1 €2
—20p3 20y 0 €3
Tgps
20=TW@) [djgps
Zbaro — 9
B,
% =T(9) | B,
B.
0 —2Z43 2242
2243 0 —2041
2, — 2%, 2%a 0
25— 2 - 0 —20,3 20,9
20,3 0 —20,
—20,9 20, 0

T(q) Ve2
Ve3
(5.37)
(5.38)
(5.39)
e (5.40)
€3

50

which can be solved with a standard weighted least squares formula using only a 8 x 8 inverse. The formula

is taken from [3] and written as

Aé=G+ 7 (5.41)

7~ N(0, Ro) (5.42)
€s = (ATR'A)TATR 1y (5.43)
€s = My (5.44)

where €5 is the weighted least squares estimate of €, and

s =€+ (5.45)
i@~ N(0,R) (5.46)
R=(ATR'A)™' = MR,M™". (5.47)

Ry is taken to be the sensor noise from equation (5.31). It is diagonal and its inverse is easily pre-computed
for computational speed. This method for directly measuring the error quaternion is very accurate if T'(q)

is calculated using the a priori attitude quaternion g(—).

5.3.2 Implementation Summary

Because the error quaternion is measured directly, the measurement function becomes

W) = | (5.48)

and the linearized measurement is therefore
1 0 00 0O
H=|0 100 0 0f- (5.49)

0 01 00O

The sparseness of H is another factor which greatly reduces the computational complexity of this filter.
Because the error state linearization is about the a priori attitude ¢(—), both the expected error quaternion

¢ and its expected measurement Z are zero.

51

The implementation is therefore identical to the error quaternion filter with the modification of 7,
2, H, and R. A summary of the implementation equations is provided in Table 5.2 and a working MATLAB

implementation is provided in Appendix B.

52

o equation (5.22)
Q equation (5.30)
R equation (5.47)

Each time step

State propagation &= Zy,_, —br_1
cos lw]At — sin lw]At — 2 gin lw]At lw]
2 Jwl 2 [w] 2 P
lﬂ‘sm \w|2m cos |w\2At 2 cin |w\2m \w\2m
Qk(_) = lﬂws"‘ \w|2m 7‘903‘ sin |w\2m cos |w\2At \w\QAt
wy o [lwlAt wy [lw]At _wr i [lwlat |w|At
o] 2 o] 2 o] 2 '
gk = 6_%51971
State covariance Pu(=) = O 1P 1@ | + Qr
propagation:
When new GPS measurement arrives
10 00 00
Measurement linearization: H,=10 1 0 0 0 O
00 1 0 0 O
Feedback gain: Ky = Po(—)HI (H.Pp(=)HL + Ry) 7t
Measurement: 7 = €, from equation (5.43)
€1k(+) 0
Gg,k(+) 0
€3.k(+) 0
State update: ’ = + K2z
P bi(+) b () | TR
ba k. (+) ba,k(—)
bs 1. (+) b3,k (—)
1
Attitude quaternion update: §(+) =4(—) ® Zlgii
2
es(+)
Quaternion re-normalization: §(+) = —= q<+)A
a(+)*a(+)
State covariance update: Pi(+) = (I — KiHy,)Pe(—)

Table 5.2: Measurement quaternion filter implementation algorithm

53

6 Results

6.1 Simulation

A MATLAB simulation was developed for debugging and testing the attitude estimation algorithms
(see Figure 6.1). A Simulink remote control aircraft model developed in [7] was run in real time by a human
pilot using a joystick. The model’s state was used to generate sensor data, which were corrupted with noise.
The gyro biases were corrupted with realistic first order Gauss-Markov drift which was identified off-line
from an InvenSense IDG300 rate gyro. GPS measurements were simulated at a constant 2 Hz and were not
corrupted with noise (which has yet to be characterized). With the addition of noise, o,ccel will have to be
increased. The extended Kalman filter was run in real time as part of the simulation (see code in Appendix

B), and all states and state estimates were logged.

Figure 6.1: Simulation of attitude estimation algorithm

All implementations presented in Chapter 5 were simulated and have proven to work reliably. The

54

results for the error quaternion and measurement quaternion filters are presented here. Figure 6.2 shows the
results of the measurement quaternion filter from a 10-minute (simulation time) virtual flight. The attitude
errors are represented using Euler angles because of their clarity. Table 6.1 lists RMS errors of various
error states of both the measurement and the error quaternion filters in different 10-minute simulations,
showing that both filters work reliably. This table includes an error state expressed as the error quaternion
[1 er]T = ¢* ® qrue because that is the error state the Kalman filter is formulated to minimize, and therefore
is the most appropriate measure of tracking accuracy. Performance in the two filters is similar enough that

the differences in tracking errors may be attributed to different flight paths in respective simulations.

measurement quaternion
filter RMS error

error quaternion

Error state filter RMS error

euler angles 10} 0.857 deg 1.03 deg
0 0.939 deg 0.901 deg
) 2.19 deg 2.47 deg
error quaternion €1 0.00722 0.00891
€9 0.0123 0.0135
€3 0.0169 0.0185
gyro biases x gyro bias 0.109 deg/s 0.114 deg/s
y gyro bias 0.165 deg/s 0.182 deg/s
z gyro bias 0.197 deg/s 0.184 deg/s

Table 6.1: Error quaternion simulation RMS errors

6.2 Benchtop Testing

The SLUGS board was designed and fabricated (see Figure 6.3 and Appendix A), and the
measurement quaternion filter was embedded. Although there was no truth reference to compare to estimated

attitude, to the human eye the filter seemed to perform very well (see Figure 6.4).

error (degrees)
n

error (degrees)

error (degrees)

bias (deg/s) bias (deg/s)

bias (deg/s)

L= T |

55

phi error (RMS = 1.03 deg)

| | | | |
100 200 300 400 500 600
time (seconds)
theta error (RMS = 0.901 deq)

| | | | |
100 200 300 400 500 600
time (seconds)
psi error (RMS = 2.47 deq)

| | |
300 400 500 600
time (seconds)

|
200

(a) Euler errors

—true

true and estimated x-gyro bias (RMS error = 0.114 deg/fs)
—— estimated

| | | | |
100 200 300 400 500 600
time (seconds)
true and estimated y-gyro bias (RMS error = 0.182 deg/s)

| | | A
100 200 300 400 500 600
time (seconds)
true and estimated x-gyro bias (RMS error = 0.184 deg/fs)

| | ®
300 400 500 600
time (seconds)

|
100 200

(b) Bias tracking

Figure 6.2: Measurement quaternion simulation results

56

Figure 6.3: The SLUGS board

Figure 6.4: Benchtop testing of the embedded attitude estimator

57

6.3 Flight Testing

An aircraft based on the commercial Multiplex Mentor kit was constructed and the SLUGS board

was mounted inside it (see Figure 6.5(a)). The plane was flown under full human control (see Figure 6.5(b))

while GPS and sensor data were recorded on a laptop via radio modem (Figure 6.5(c)).

_—
- T

(b) The aircraft in flight

(a) SLUGSv1 mounted in airplane (c) Monitoring flight systems from the ground station

Figure 6.5: Flight testing the system

Due to unforseen vibration which coupled through the PCB mount, all sensor data were unusably
noisy while the motor was running. During one flight the airplane was flown high and the motor was cut
off. Though the propeller continued spinning because of the wind, the vibration was reduced enough for the
ensuing 80 second glide to provide a sufficient data set for testing attitude estimation. In post-flight testing
the measurement quaternion filter was run on this data set and provided very realistic-looking attitude

tracking given the recorded flight path (i.e., the airplane banked left as it turned left, etc., see Figure 6.3).

58

The apparent success of the measurement quaternion filter on real flight data strongly indicates that the

filter design is successful.

¥ A

A - 8 e s

Figure 6.6: Post flight filtering

59

7 Conclusion

This thesis has covered the prerequisites for understanding attitude estimation using Kalman
filtering and the quaternion attitude representation. The concepts of error and measurement quaternions were
developed and used to implement an efficient Kalman filter. This thesis is intended both as documentation
of the measurement quaternion filter, and as a reference on attitude estimation for myself and others.

I have demonstrates that the measurement quaternion filter provides accurate attitude information
while maintaining relative computational simplicity. I have derived the measurement quaternion filter and
proven its robustness through simulation. I have confirmed the filter’s computational speed by embedding
the algorithm on a dsPIC33F and getting successful benchtop attitude tracking. The filter has yielded
believable attitude output from flight data recorded by SLUGS, which indicates that the SLUGS system
works.

Because the measurement quaternion filter was not developed until after the flight data set was
recorded, to date there are no results for live, in-flight embedded attitude estimation. However, benchtop
attitude estimation has been successful, and because the successful post-flight filtering runs exactly the same
code as is now embedded, I expect that the filter will work while in flight. Flight testing was suspended
while I wrote this thesis and will continue in the very near future.

Advances which the measurement quaternion filter promotes include further miniaturization of
UAVs, cost reduction of existing UAVs, and the expansion of UAV research and interest into a broader
scientific and hobbyist community. We hope that by releasing the algorithm and hardware to the open

source community, our work will contribute to the development of the next generation of inexpensive UAVs.

60

Appendix A SLUGSv1 PCB

Angular Rate
Sensors

Barometer Differential | |
aromete Preassure !

1

| Alpha-Beta !
Vanes | Thermystor !

|

]

1

]

1

Battery Level

il

‘ Signal Conditioning and Low Pass Filter Bank .

—
Sensor MCU
) ISPz apc | | Deadman
Optional Devices | 12C Module | 1 Switch
| |
2o Yl I |
o £ 2 g2l oPs
Optional 5% | £= o 2,
Z
Daughterboards || | @ | Debug Port
1 | IC | SPI1 | I
| |_Module Module 1
RCM
Log
iy Control MCU
W’ ————— — —— —
8 ! SPI 1 1 ;
| Module =l Radio Modem
TEES" = o
15 22 ‘
| £= s Data Log (SD
I | Card)
I

l Power Supply
12t0 5.0V

. q Actuator 10

[5
-2 AMp Supervisor
| L_SR Servos &
I 6.0 to 5.0V 6.0 to 3.3V
| 1.0 Amp 1.0 Amp
12t0 6.0V s o
1 2 Amp Digital Digital
| SR 6.010 5.0V 6.01t0 3.3V
| 1.0 Amp 1.0 Amp
| Analog Analog

Figure A.1: SLUGSv1 block diagram (detail)

61

<dNoT N 4nT'e KN
NT"oyy

&) NOITIZI

e

)

38 @, ¢

0LS
56M710

CONT
38FJ2

U$areL

JPE

AECANHSSN

1CSPETRL

Figure A.2: SLUGSv1 layout

g AGHEN KOG
N KW 22uF

2UFj

o

3303 (@,
K3 NN

xhe

=

m}
12

T#E

|AP board vi1

o P

\ Spring ‘08)

SEN-00394

=
:
©
a
W
)
o
d

=

<+

62

Z/T 129yg Wd TZ:EZ:T 8BBZ/CT/G =18 OnNo
M
VWA
== ook
N3y sAsqunpN 1Uswnoo(g MW £894Z7T21d oo
) ISV g 105 L0 SN gnemowsenn |
= NDXg3J0dv o 1NOAT2/ +dD
dodtew 37TL JI0XGNUGY g 9997899 mon nprysem [E
» o 801
~2h [&
gNg d4NTB 2
=
OND OND OND OND
SI0HLNDD . SHOSNIS o
= U1 o Jon fon Jon = (&) [[
|Tnz Tty 4 P £cCccce - famis[t} » ccccc
“ 5 B88388% 5TR 5 38388
z7| B9trToOs/BIND © ZI0S/END/ 90 3y 7| sovszoossomg @ ZI0S/BNI/ 94
7| B9grEssT/EINDG TAIS/BNI/ZY 5y | sourzssT/TING TAIS/BNI/PIY
&g erou THUS/ES |55, S TYOS/EDY
7| €7vou T195/2 |75 NONGT——2g| E79U T135/294
55 rrou XTI/ T pp = »I5H X122/ 794
| oo X¥Z0/e3 |5n s X¥Z3/BOY
BNJ/XJT1/00505/ZINN3/239d/ v T8 [r7—gggz— BND/YDTL/DISDS/TINHI/ZI0d/ b TOH
IND/105D5/20NW3/2096/ET08 [e7—ogz— TND/12S0S/Z0NW3/209d/ ETY
sg| ETsdssiyzn o4 erdursLuzn
TTI/819zN STOU/0A10/2080 rszosp7 5H zvanssiozn G7I8/0M19/2050
8.44/7005 ZTOH/ DI/ T3S0 [esTI50~2 - =Ted 8dJt/T00s ZTY/TATD/ 1050
234/7105 DOodTeg <3/ 7108
94d/BLNL/ THIS AIBLAAIGL/BING/¥OH e - 5 94H/BLNIZTHOS HIBL/AIGL/BTNG /¥ DY
G/ XLEN/BIND ADBL/MIFL/BING/EDY &~ o GdH/XLZN/8TND MOB L0k 1/8TNY/EDY
¥ A/ XUZN/ LIND AIPLIAIEL/LING/ZOY |7 Toed PIU/XEIN/ZIND HOPL/AIE L/ CING/TIY
ERI/XLTN ALL/AITL/ITN/ T [go5g E4t/XLIN HILL/AITL/FTNG/ FOY
Z34/XyIN = zJH/XuINn
TI/XLTD = TAH/XLTD
8.9/ X4710 B400/ZTND/STING/GTEY [y - BIH/XHTD §430/ZTNI/STNY/GTEY
YING/TEd |2y 7 PING/PTEY
ETNG/ETEY |2 ETNG/ETEY
EI/TINI/BLTI/TINY TING/ZTEY |77 B3/ TLNI/BL1/ TINY TINV/ZTBY
830/ TLNI/5113/B2NY TING/ T8 |55 - B3/ TINI/U114/BINY TINY/TTEY
£/ Hb N BING/BTEd |5 - = Z30/HbNND BTNY/DTBY
93/ TrlMd BNY/BEY = 934/ HhiMd BNY/BBY
G30/HEWNH BNu/BEd | 534/HENN BNU/BBY
¥30/TEHND ¥09d/FONH3/ NG/ (8 I sroTS T = $38/71ENNd T09d/TONWI/ NG/ ZBY
E30/HeNd Y400/ 700/ FINHI/ONG/98Y 57— NKg — ?, £3H/HZNNd Y400/ 729d/ TINWI/ONY/58Y
T3/ TgHNg 830/¢NJ/SNB/GRY |55 S8 347 Teknd 8307 ¢ND/GNY/5BY
T/ HTWN W3D/SND/YNG/VEY |37 %5 13n/HTHNG Y30/ 9N/ $NU/ b B
834/ TTHNd XONI/GNJ/ENY/ERY |5+ T. @34/ TPNMd XONI/GNO/ENY/EBY
/188”/+NI/INV/Z8Y ter—torymgr— © /755/¥ND/ZNY/ T
G70/801/T2NJ/S TP/ EONNI/END/ TNG/ T8 [sl STOH/821/ TIND/S LETPOd/EINWI/END/ TN/ TBY
¥T00/ £1/82ND/S TP /EONN3/TND/BNG/B8Y [Z7 20 vI08/221/82ND/5 L BIDG/ ETNUI/TNO/ NG/ BEY
E708/901/6TND Ye—5g Er0H/S21/BTND
Z708/601 OEXE—ey ZP0/Ed1
TEOU/ O YINL/GTW b, TYE—o TTO0H/42] ¥INI/GTOY
TON/EDL EINI/FTH |=r 29%8 14 pronsedl EINI/FTUY
808/201 RGN 34 | 6087231 +Hn/BTYY
80/ 721 -un/esd ey M o—oe B0H/T31 -dNn/BoY
£00/800/9FNI/NOdN ETNI/EZNG/ Ol [U1 8 L o5/B90/9TNI/NDdN EZND/EZNY/ 2Wl
S0/ ¢0/ BTN ZZINI/ZTING/99 [™ o0u7e00/8TND TIND/ZINI/ S0
GO8/920/ kN 00L/89d g 74 cov/e00/vIND 00L/GvY
#04/500/EFNI 10L/v9d [5n 8B ous0/ETNI 1017k
N pees L s
TOHED =28 B | ZO4/ED 23 T
T/Z0 SBES5ESS LT o8 NAS¢] JoMzd SSSSSSSS YL/ TvY
pOy/ 70 oOMOoODDDOO SHL/BYd s N“ 20H/T20 OMoODODO0OD SHL/BYY
o nEBET [RS
© BTLNPSEI JEE " =7 BTLHPSZ IEE
4+ Ong JneT b 2 ong dneT &
w m = 70 %
=2 &) >
(2]

ic page 1

: SLUGSv1 schemat

Figure A.3

63

2/ ©199Us

Wd 12227 8BBC/ZT/G *=18(]

‘N34

sAsqunp 1Uuswnoo(g

dyurew

*3LTL

anzz [27TEL

9e73| 2E 7

PN

o3
°E
[

i

%%%%
PREESITRE

o Jnzz
1

4nT°B
~

iﬂqﬂ:u

T3l

Qno
?L|_|| 438N oxy 4N
O q Swo ooy [PREEINED I_\
HNGD 58N |2 55
st OXL [r=Toones

gIgene+

hitanssuuo) pieogusiybreg Ny

NO . Zzw
_ E =]
g\+ WWWW WWMW MJ -
w 23S0 T
S @.ﬁmﬂw@u N |_.H_w_ 5
T - = 3 — of 7
= oo | Sy TOS0TT R
ot o
@mn:ﬂmmuﬂudﬂ sng paged & b Qo
=
Bar > 2
IES anNg9 401ET[12SD _MUZ 104UDD .‘.O—WZ«UMOWDUZ ADSUSS
Q¢ 7zrZISoNDEIEs 2 oNe g gZ2
s} © ® c
O3 —ezvsToETEe iy iy AL P % il [
o =} =] o b SItE
9g0dv W N = 8 N
= w
2Li89LR 217 5 e
OND =N @ g) 5 _ _ _ o
OesorTaraw ONg T T Ty Ng Ve
o3 np bnre bnre bnre brre bne 2 AT ENT R InT e InT'R HNT R in TR 8
O osTHT3Taw = o
131dv¥
sdej ssedhg nJu [oAuo) sdey ssedhg nou Josuss
bngeg pue haswaral 11493 dy sg37 wrd
ON9 ON9
OoNg e =
e - S— o
2 Sdd |—— =1 J9d7 | X6 T
< 4 G -
o 8 o ST =g o 2 e[S Prras
£ el ang 9 Sdr ¥ | XF =
2] TXY - =TT [4 & O IOHT
13 Xg50d9 Z - e Y
4 XL =—%Tegy O7 o3 L ol
o Bla N3SdSII e
4
JlH9T NIN + anr 412dS01 .mmu) %
44
4-Gea3 ser . ,<>_w_,<m<v B3 AW
/_\ w T4 L\ 2 €y
bo eeg Qs + S g
AD1D3UUCT 5d9 @ 5] E
B @
- dSJL NOW 4osu2s dSJ1 NJW 4osUas
g G [4 T

Figure A.4: SLUGSv1 schematic page 2

64

£/E $193US

Wd TZ:£2:T 88BBC/CT/G *=18(]

HZBYS1aurENS

OND

N3y tASquNp 1USWN30o(]
o T30~
i & 77 57
dyutew 37101 S T i
O TSI/SUVN 2T | bTA 870 BT
neogrIgw 1| 8¢ B0 ey UoHIgu
NEIw v er | 8 B0 [T 3o
MEIwEay 5 | & 48 ez ITvEav
Teunggy_B | ¥¢ %9 [zz— unmgv
R foETTTaT] 84 80 eI Tar—
nenI@gdy 5| ** Y0 Iz nIIEau
_
o novgdy £ | o ¢ 20 [or o 13mav
o nSIXMegy ¢ | 5 10 Mz —Txmogv
nGexnegy 1| 24 B0 g7 ——2Xgdy
NO32804 @ N 280
W 4403004 & _n
7 OI18nNT~ - anNg
—= .
o ey 1nogy I3 i B 4T &
T 1nozL NI L E > Lo + m
TN w =
ze7USTROETgs 5 MY 1078 5—psTHoETae Nz S =)
ZEZTSURDE0aY 2| LMoL NITL =T TSORDE099 2
(24
aN9
-2 I—s% inza13g sbeion
e Nl
= s -39 45 10PN RS
- 0 +19 b
o L T0I —1 N oo
. = eonEE
N
T ® 830z —mrROREIIUEe 2
m (=74 818z [A £Z CXTOXT)sﬂ
g 52| 5% 89 [Trrore— o0
@ g e s S —— 9%
5z <& B e -]
45A193SURAL ZEZSH 52| 2% ove §§|_. Q5 ISV
—ee] 5% 99 gmITIIXE =€
144 oz
TE Z7__0ngxg =
rze| t5¢ EvZ ST IToaxRy Se
OND Mg | °&¢ A SR GRS ¢4
FE| ¢ We Sy ogRIxE T
aNg e — 915Xy
Sr1T—mowr XY PE| 278F PTT T —rmexrvay
O XY B 57 A
T_JNGHU30 o AL o e 897 M5 Tou 19909
NHO o T3 Tv 8% 7 e TEU I Ty
@ o] XY 414 297 7 Tund 1999
Qe T—Txw EREL! L = WY e
Uo1ng uewpesg Crerr NITIT {2 £
o0 o =] ALK AL} i =l b L
foficl BAE L I BT [T3 Ivady
o0 fot=d IENEE] 3T v 8 55 OVF [Tnsivey
- o] MIERER| DEAT n IGLA AN o - 013 211
w OO0 29 g
< Ceol—=wa
w o W_% a1
g 00 fotEl MENIL aNg _
3 © OND 13- 2 21y UgAI
Om s}jopuelg ¥dl ANT R HNTR
Som | &
Sz —wus S +
O 5 — 5 o
NDOJ 3¢ & ITF. grigxTIi
<
s
N 4
401350u0) T edr’ ﬁm__mummuum w M
UDING S}ES[IE J PUE J40XS[dN[N,| OA4SS N *Igdns Xy P4 T
Z Edr zdl
=
(7]
2 g 4 g 4 T

3

ic page

: SLUGSv1 schemat

Figure A.5

65

2/ 19943 Wd TZ:EZ:T 88BBC/ZT/G 918 J%
N3y sJequny 1USWND0o(
Wav%
dyutew :3TIIL amoeg ey | 0ve) g8z
8ZOPCT0] ++D
9
n 1905
ip aNo .
ang B o anNg
I
N 8
w-sv||_ .
GELEOSN _M_,A TSETHEH oo anTe| Jner
T il < 5zo[€210
TZBE-8B-Z2 5 o
P41 S zZw aNg
— s e Sy e
+ L e L
N & 5 1X3
Ve = AL
w 5
=g
= ‘ " Fheer| snez|inTe
) Can = =
1_\ i 0] 9e0] cer
[l -
% ” n
=7 =7\ g
ST grgz| anTe Jnez| v ang3 |[4nTe o 2
= =~ = == == == p
< THD 125 s-aveedl |7 e¥J| BED e'c-obcaBED]| +ED < 3
o= B 2z -
(GRS =] 2 [ShE=]
¢ N ¢ NI ni
. TLMO S M T) BB R LN g @m_ sembay Bulumng $ o1 ZF
w o S
W z
2
=

hiddng J4enmog Boreuy

5@BRINDHI

OND 1_\

ON9

¢ ¢ ¢ o=
D200 D20 Huvﬂ w Unn%sﬁ 4npT
< P <o B B o % =
.kva.._:mﬁh_.q.m\ anvplinezinre fsney| .*_.@Nwﬂm\s%a -, 4neF| anTp| Jneel| auu.% . aney|srvelgreey| BRIl
m — — — = — — —
“«mmWINmWI eeS[Ieofcero[rET0] o 5901 620 ks GIR® 95T 3 LOR] i ot ©T0| BOTI| <ED|T i I
G-0+ERdT £'e-oredd o
S L won 2 AN el
2 2 J 5 T iy W
' - Samz_w ' N_Emsc < + »
5 @a & rov LIEHNT s
& Z934 193 5 & 4 & A=
=] =] 2 731 ES
5] =] =
-

hrddng 4emog tewtbig
v 52'z — hrddng asmog oadsg

SLUGSv1 schematic page 4

Figure A.6

£/G 1994S Wd TZ:£2:T 88BBC/CT/G *=18(]

66

NUNG+

NWI J00-§ unyideds

a
&anag
=~
5213
<—
NUENE+

NEENE+

=2
||G YSTT2XOdW @
o K - - ¥ h.lm
: 1A3qwNp IUSWNDO T]
n3g Sl g s NI [T =1 BN inon —
ggd | IN ON9 =59 BT 4nTp Imﬂ TON OND -
dyutew 37111 we LN S =Ea = & e £ AR
5Z10 2870
B) o 880 3%
o 1 +
2 2
=z SAOSUSS 24NSSodd 3
=
e .,...—_—————————————— -1
| Im jﬂmﬂ«ﬂ@n\ ECIPE |
_ — 29 ze0 = m _
| — s 720 lﬁu |
=
_ 79 270 0 B _
4 Z © C)
|] 15 710 B |
b 5$n o AN 80T |
| -z ZzaToUH =2 |
50710 2 g 2TZ8TIHH 5| %2029 [+
_ N = sws sws g =— 7eoes b+ |
VWA] B+30 wong +1M0 ooy
| 2T % 8-440 ¢ 3vomyan m 4T | Nt -44D |w 7 TI0 9 |—— |
8+1M0 §-1M0 +3490 = © 110 75
_ o . T @ovw v-uo FEYoon 93] &3] s 2 ge|® B _
| TZ a T 9+t/S @pIsoEn ¢ oo 2] BT ¥$n mrhre| srer| |
3 5 & v-s w0 [—pgog +/5 T s L
| z S 0 - 30mEN [«90] &+3] o+3] |
-1M0 | ——cooR (114
_ BTNl + T AAA |
01
| W a1 '8y |
z9 220 2 -
| s = ® 5 |
£ 5 F
_ . sisrswoisubey % |
L— 9210 /5 z
— W ST
| 570 b5 18 |
@
| gnt 2$n -z |
Sende 3
| g3 _
[514 =2 _
A 5 4008338 |,
_ (& - _
“ & o M 15 o _
[
| 3 9 TS = 4npF nTp |
& WS [= =
- - el rrel 89 €59 smz e |
e —— ECCENL
| 7 559 ZoggE | s [eo—a9 |
<
@ N9C 335 BRESHXUY B 3vw-s —oEro _
| © o3l [GONII BEESOXUY Ll s A
_ _
7501 _ - 1" Trar |
2]
| | 4347 PREDD |
_ cihg stxy-7 |
_ _
[|
_ |

ANSTWASY |

1TUN WUSWSANSES)] [RT149U]

Figure A.7: SLUGSv1 schematic page 5

67

£/9 $193US

Wd TZ:£2:T 88BBC/CT/G *=18(]

N3y tA3guWnp 1uswnoog
doutew 37111
—2
B & =2
_ q _@ 5
= 4npT m:ﬂ.m 5 4
P B3 ez inTe
U =, + -
L @m =2 uEE 760] 622
2 =% z lﬁu 850 /—\ &
w ><><M<WW‘ _—<>M< <Z >=>¢><>< >=>¢><>< &
o I ng
- m ugT w W Udy =58 WNW“ TEY o ey kL, .
- w2 ¥83[-
ugT wlo 289 " a7 *NE mmvzuw] TOIId - +NIE mmzw
Wzl AL =] -NE L *NT [— BT | hE o T | 399 peEoOl
=& AMAA > . |4 3 NIE . *=NIZ 5
#<0 TIRe—— Y g | lMUe 2 e — "L Tho— W = 1noe @ 1oz
o z
. BEY &
i Z7 un%" wnm € 0gvd 99 2114 77| NIF NI 3309
A BT 4 AV — -NI¥ -NIT
<t . i I ENT TRy -z L T -
g T T
2 g
el
5 2101 uge usy €731
uEE usy =
~Lr €97 [42]
820 249 AAAA, AAAA
><><><>< >=><><>< ¥ <W‘N_\a v W_‘N_xa
fa%s] T
SADSUSS 94NSSadg
@
-
@ =4 =) =)
Illlm _J. — Illlm Illlm
S g3 hnTe =]]
kS Jrezlinte
. P e a5gal
s < = 4 +
2 @& 2 o D g m‘ @
=] AR A -z AR AV 4
2 YV VY VY VY LAAA V¥V Y 2
® BEY BN s = gcd vad sl
TE vl eiz = L
o 3 - M S8 s - ne S5z
ugy wlo +NIE 5 B I gT| *NIE B&H T
L=t g I g v I Ll | P 114 I L NIz : S
[<AR] 7 BT ,‘_.%mw_ g LN0E @ 1noe | ¥ TRY e..mwm g LMoE g Loz [—
o o
Al N NIV e 339 BeEsORuy " gc HF NI e TIooe
AAM 1 o S ANV AR
Ny =1 oy rov (£ BNy S inoe o [
- T T - 2 T
TS T5
STI1 Z731
D> 3
uEE ucy ugg ey
et el
] T 690 CER)
AAAA AAAA AAAA AAAA
VW VW WAL WAL
9EY vEY zey 57U
o4hg -7 S4913W0 451823y
2 =] ¥ [c T

6

ic page

: SLUGSv1 schemat

Figure A.8

68

£/ S199US

Wd TZ:£2:T 88BBC/CT/G *=18(]

N3 sJequny 1USwWNoo(
gydtew 37171
@
-2
=2 >
() o 4
=2 3 Ireliney
1_\uv UEE 7
= .
) 8270 ©
el E
50| s5d ush gkl
Z3710 sg
. +NIE 8 BNz oy tEp ot
"L o0z L A
1N0E @ 1M0Z
s E g g Z
,>®>WN 7 +NI¥ +NIT BRI
YWV —NI¥ -NIT
i 56 e oy unor [
(2]

==
= 2791
>

uee r_mv .

@
=
(w)
D
ney| o nr
SETD] 68D
{714
1npn
JAEE v Y ‘ o e
T3 TR VW =25 3070 [e
e %j 5 sn- Nl |—ooon
- LSt N F5—gop
ﬂ&ﬂﬁﬂ+ Zzol
(4]
<
2
=z
(7]
—_—
o
T
ngty
YETD[€TI0 ::; b
fr o
EE[R ,<>m‘wm ¢ m EsCRSIN B W
u Sh- L I Zoe
..__.q. ney sne o [oo
5070 2T10] %,f 1231
(4]
<
2
=z

EETI] ¢p13 o0z
—{ Ifon
JAEE 341 faa]
1972 421 %] T3 ToRT —WW— =25 J3079n
A ARAA 6594 G
VYV VYV SN- +NI
W . .ﬁ.; 4neT 51_Sn+ NI
¥8T0 ®NQH
o4hg A-x
.
(4]
<
2
=
OND
sis1swoisubel|
. o Lo OND
7| anes ST RER
¥II0[B30 <
BZTO[FIID . N JTe 4npT
AAAA II'“ II'“
BW 338 ISNT Voo NSNS Sy70 e =] ngy
S5 880
Tz []14
=~
aH 15y
-
W
<
[
W &GquE_WI._.
9 =} 14 14 c

SLUGSv1 schematic page 7

Figure A.9

69

Appendix B MATLAB code

The following code was tested and shown to work before insertion into this appendix. However,
it had to be altered to fit on the page, and some code which had been commented out and was no longer

necessary was removed for readability. It is therefore unlikely but possible that an error has been introduced.

B.1 Measurement Quaternion Implementation

function [quatout,bias_out,V_inertial_out,euler_out,pqr_out,unfiltered_euler_out,bodyAcc_out,P_out]
= fcn(gyros,accels,mags,dt_gps,gps_update,XYZ_inertial)

%o o ke st sk sk sk sk sk sk sk sk sk sk sk sk sk ok o o ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk o ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok
%dhkkkkkkkkkkkkkkkokk initialize variables skckskskskskskskskskoskskokskokkkkkokk
Yo ot otttk sk sk sk sk sk s s sk o s s ok ok ook ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok keokok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ko
persistent xhat;
persistent P;
persistent XYZ_inertial_prev;
persistent XYZ_inertial_prev_prev;
persistent unfiltered_euler;
persistent bodyAcc;
persistent V_inertial;
persistent counter
persistent gyros_old;
if isempty(counter)
counter = 0;
end
if isempty(xhat)
xhat =[0.7934;
0;
0;
0.6088;
[1e-6;1e-6;1e-6];1;
P=diag([1"2%ones(1,3) .172*ones(1,3)]);
XYZ_inertial_prev = [0;0;0];
XYZ_inertial_prev_prev = [0;0;0];
unfiltered_euler = [0;0;0];
bodyAcc = [0;0;0];
V_inertial = [0;0;0];

70

gps_alive = O;
gyros_old = gyros;

end

dt = 0.01; % fundamental time step
g = 9.81;

B = [0.468741473405951;
0.129010679377825;
0.873863648240210] ; %NED

a_n = 5;
m_n = .05;
q.n = .6;
% a_n = 50;
% m_n = .5;

Q_quat = 1le-3;
Q_bias = 1le-2;

tau_gyro = 100;
exptau = exp(-.01/tau_gyro);

R_sens = diag([a_n"2%ones(1,3) m_n"2*ones(1,3)]1);
Q = diag([Q_quat~2+%ones(1,3) dt*Q_bias~2+*ones(1,3)]);

x_old=xhat;

9% k¢ e sk sk sk sk sk ok ok ok s ok 3k 3k ok K ok 3 ok 3 ok 3 ok 3k ok 3k 3K 3k 3 ok 3k ok 3 ok 3 ok 3k oK 3k K ok 3 ok 3k ok 3 ok 3k ok 3k K 3k 3 ok 3 ok 3k oK
Tl Fxkkkkokkkokkkokkkkkkk propogate state s kkkskskkskkskskskkkskkkskkkkkk
%%k 3k ok sk sk sk sk sk sk ok k ok sk ok sk ok ok K sk K ok ok 3k ok sk ok sk ok 3k K ok k ok 3k ok 3k ok sk ok sk ok sk 3k ok k ok 3k ok sk ok sk ok sk k ok ok ok %k ok
counter = counter+1;

p = gyros_old(1)-x_old(5);

q = gyros_old(2)-x_old(6);

r = gyros_old(3)-x_old(7);

normomega = norm([p;q;rl);
normomegainv = inv(normomega) ;

C = cos(.5*dt*normomega) ;

Sn = sin(.5*dt*normomega)*normomegainv;

Phi_old_small = [C, -(p *Sn), -(g* Sn), -(r *Sn);

(p *Sn), C, (r* Sn), -(q *Sn);
(g* Sn), -(r *Smn), C, (p* Sn);
(r* Sn), (q *Sn), -(p* Sm), C;];
x_minus=[Phi_old_small*x_old(1:4); %(predict state)
x_01d(5:7);];

if x_minus(1)<0
x_minus(1:4)=-x_minus(1:4);
end
x_minus(1:4) = x_minus(1:4)/norm(x_minus(1:4)); ‘%normalize quaternion

%%***

71

Dlkkskskskkokkkkokk Propogate covariance skkskskkskskskskskokskokskokskokkokhokkokskokkok
O %% ke sk s o ke ok sk s o ke ok sk o s ok sk sk o sk ok sk o s ok sk o s ook sk ok o ok sk o s ok sk sk ok o ok sk ok o e ok sksk o o o kok
%0ld state transition matrix

Phi_old = [1,0,0,-.5%dt, 0, 0;
0,1,0, 0,-.5*dt, 0;
0,0,1, 0, 0,-.5%dt;
0,0,0,exptau, 0, 0;
0,0,0, 0,exptau, 0;
0,0,0, 0, 0,exptau;];

% propagate covariance
P = Phi_old*(P+Q)*transpose (Phi_old);

Tolh skok ko ook sk o sk ok ok ok sk o sk ok o ok o ok o sk ok ok ok o sk sk ok ok ok o ok sk o sk ok o ok ok o sk ok ok ok o sk sk ok ok ok sk sk o sk ok ok ok o ok o
%% *kxkkkkk translational Filter skkskokokskokskskskskskskkkokskokokokok sk sk sk ks ok ok ok ok ok ok sk ok sk k o ok ok
Yol ok okok ok sk ok ok ok ok ok ok ok ok ok o ok o ok o ok ok oK ok o ok ok ok ok ok ook ok ok ok ok K ok oK o sk ok K ok o oK oK ok Kok oK ok ok oK ok ok ok ok o
%% check for gps update

if gps_update
V_inertial = (XYZ_inertial-XYZ_inertial_prev)/dt_gps;
Cnb = g2dcm(x_minus(1:4));

bodyAcc = Cnb*((XYZ_inertial-2+XYZ_inertial_prev+XYZ_inertial_prev_prev)/(dt_gps~2));

if ((XYZ_inertial_prev_prev(l) == 0) && (XYZ_inertial_prev_prev(2) == 0))
bodyAcc = [0;0;0];

end

XYZ_inertial_prev_prev = XYZ_inertial_prev;
XYZ_inertial_prev=XYZ_inertial;

%% 3K 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k >k sk 3k Sk sk Sk Sk Sk Sk sk Sk Sk Sk Sk Sk Sk Sk Sk Sk ok ok 5k ok ok 5k 5k 3k 3k ok 3k 3k K 5k 5k k sk sk sk sk sk k %k
Yo FARKAAAA A AAAARKKKA A UPAATE K AAAKAAAAAKAK KA A KA A KK AAAKAK KA A AK KK
U0%L stk sk ke sk ks ok ok sk ke sk ko sk ko sk ko sk ko sk ko sk ko sk ko sk ko sk o sk ke sk ko sk ks sk ke sk ko sk ks sk ks sk sk sk sk sk ok
gm = xhat(1:4);
MM=zeros (3,6) ;

M = zeros(6,3);
W = zeros(6,6);
for k=1:1

Cnb = g2dcm(qm) ;
A_hat = Cnbx*[0;0;-g];
B_hat = Cnb*B;
M = [2*sk(A_hat) ;2*sk(B_hat)]; %no noise
W = diag([1/a_n"2+[1 1 1] 1/m_n"2+[1 1 1]11);
MM = inv(transpose(M)*W#M)*transpose(M)*W; %with weighing

g__err = MM*[((accels-bodyAcc)-A_hat) ; (mags-B_hat)]; %no noise
gm=quatmult(qm, [1;q__err]);
if (gm(1)<0)

qm = -qgm; % make scalar part positive
end

YA

els

end

A
A
A
b
%
A
A
A
b
%
A
A
YA
A
)
A
A
A
A
)
A

72

qm=qm/norm(qm) ;
end

unfiltered_euler=quat2eul (qm);

Z=Q__err;
% Expected measurement
z_hat = [0;0;0];

% Linearized measurement matrix H
H= [eye(3,3) zeros(3,3)];

R= inv(transpose (M) *WxM) ;
R=MM*R_sens*MM’ ;

K = PxH’*inv(H*P*H’+R); % kalman gain

P = (eye(6)-K*H)*P; ¥ update covariance

xerror_hat = [zeros(3,1);x_01d(5:7)]+K*(z-z_hat); J update state
xhat (5:7)=xerror_hat(4:6);

xhat (1:4)=quatmult (x_minus(1:4), [1;xerror_hat(1:3)]1);

e

xhat = x_minus;

if xhat(1)<0
xhat(1:4)=-xhat(1:4);

end

xhat (1:4)

xhat(1:4)./norm(xhat(1:4)); Ynormalize quaternion

gyros_old = gyros; %save for next time

U ok sk ok ok ok ok ok ok sk ok ook ook K ok ok ook oK ook Kok ok ook oK oK ok oK ok oK oK oK ok K ok ok oK oK ok Kok oK oK oK oK ok K ok K
Dol Fxkrkrkkkkrkrkrkkkkkk unfiltered euler angles ¥kkksksikskkskkkkkrkkkskkkkkk
Y sk sk ok ok ok ok sk ok KoK R ok K ok KKK KoK K ok K KKK K SR K ok K KKK KK SR K oK KKK ok K oK KKK K ok K ok K

Gbody = accels-bodyAcc;

Gbody = Gbody/norm(Gbody)*.99999999;

Pitch = asin(Gbody(1));

temp = -Gbody(2)/cos(Pitch);

if abs(temp)<1

Roll = asin(-Gbody(2)/cos(Pitch));

else

Roll = pi/2+*sign(temp);

end

if sign(Gbody(3)) >= 0 % if upside down, correct phi
Roll=-Roll-pi*sign(Gbody(2));
end

ct = cos(Pitch); %set up trig for less computation time
st = sin(Pitch);
cp = cos(Roll);
sp = sin(Roll);
Bflat = [ct, st*sp, cp*st;
0, cp, -sp;]*mags; ‘%rotate mags into phi=0, theta=0
Yaw = 0.2686 -atan2g(Bflat(2),Bflat(1)); %calculate psi

73

% unfiltered_euler = [Pitch;Roll;Yaw];

%% 3k >k 3k 5k 3k 5K >k 5k >k 3k 5k 5k 5k 5k 5k >k 5K >k 3k 3k 5k 5k 5k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k 5k 5k 5k 5k %k 5k >k 3k >k 5k 5k >k 5k >k 3k 5k 5k 5k %k 5k >k >k >k %k 5k >k 5k %k 5k %k >k >k %k >k k >k %k
Tl orkskskokoksksokokskokskokdokkokokk QUEDPUTS okokokokokokokokeskoksokeskok ok sk ke ko ok sk ke sk sk ok ke sk ok
Yolhy skokokok ok sk ok ok ok ok ok ok ok ok ok oK ok o ok o ok ok ok ok o oK ok ok K ok K ok ok ok oK ok o ok oK o ok ok oK ok o oK ok ok K ok ok ok ok ok ok ok ok ok o
P_out = P;
quatout = xhat(1:4);
euler_out = quat2eul(quatout);

% euler_out (1) = -euler_out(1l); %reverse sign for GS
bias_out = xhat(5:7);
pgr_out = gyros-xhat(5:7);

unfiltered_euler_out = unfiltered_euler;
bodyAcc_out = bodyAcc;
V_inertial_out = V_inertial;

end

b
% additional functions
)
function as=sk(a)

% This function determines the skew-symmetric matrix

% corresponding to a given vector a with three elements.

as=[0 -a(3) a(2); a(3) 0 -a(1); -a(2) a(1) 0];

end

function quat = quatmult(ql,q2)
% Multiplies two quaternions.
qvl = q1(2:4);

gsl = q1(1);
qv2 = q2(2:4);
gs2 = q2(1);

quatv = cross(qvl,qv2) + gsl*qv2 + gs2*qvl;
quats = gslx*qs2 - dot(qvl,qv2);

quat = [quats;quatv];
end

function quat = quatinv(q)
% Inverts a quaternion.
quat = [q(1);-q(2:4)];
end

function angles = quat2eul(q)
gqin = q./norm(q);

y=2.%(qin(3,1) .*qin(4,1) + qin(1,1).*qin(2,1));
x=qin(1,1).72 - qin(2,1).72 - qin(3,1).72 + qin(4,1).72;
phi = atan2g(y,x);

end

74

theta = asin(-2.*(qin(2,1).*qin(4,1) - qin(1,1).*qin(3,1)));
y=2.%(qin(2,1) .*qin(3,1) + qin(1,1).*qin(4,1));
x=qin(1,1).72 + qin(2,1).72 - qin(3,1).72 - qin(4,1).72;

psi = atan2g(y,x);

angles = [phi; theta; psil;

function angle = atan2g(y,x)

end

angle = 0.;

if x>0
angle

end

if x==0
angle = .5xpixsign(y);

end

if x<0
angle

end

atan(y/x);

pi*sign(y)+atan(y/x);

function q = eul2quat(angles)

end

% converts phi,theta,phi into q

% lifted straight from matlab’s function (with a transposed output):
cang = cos(angles/2);

sang = sin(angles/2);

q = [cang(:,1).*cang(:,2) .*cang(:,3) + sang(:,1).*sang(:,2).*sang(:,3);
sang(:,1) .*cang(:,2) .*cang(:,3) - cang(:,1).*sang(:,2).*sang(:,3);
cang(:,1) .*sang(:,2) .*xcang(:,3) + sang(:,1).*cang(:,2).*sang(:,3);
cang(:,1) .*cang(:,2).*sang(:,3) - sang(:,1).*sang(:,2).*cang(:,3)];

function dcm = g2dcm(q)

% The direction cosine matrix performs the coordinate
% transformation of a vector in inertial axes to a vector in body axes.

qin = q; % don’t need to normalize because it is already done
%qin = quatnormalize(q);

dcm = zeros(3,3);

dem(1,1) = gin(1).72 + qin(2).72 - qin(3).72 - qin(4)."2;
dem(1,2) = 2.%(qin(2) .*qin(3) + qin(1).*qin(4));
dem(1,3) = 2.*%(qin(2).*qin(4) - qin(1).*qin(3));
dem(2,1) = 2.%(qin(2).*qin(3) - qin(1).*qin(4));
dem(2,2) = gin(1).72 - qin(2).72 + qin(3).72 - qin(4)."2;
dem(2,3) = 2.%(qin(3).*qin(4) + qin(1).x*qin(2));
dem(3,1) = 2.%(qin(2) .*qin(4) + qin(1).*qin(3));
dem(3,2) = 2.%(qin(3).*qin(4) - qin(1).*qin(2));
dem(3,3) = gin(1).72 - qin(2).72 - qin(3).72 + qin(4)."2;

75

end

B.2 Error Quaternion Implementation

function [quatout,bias_out,V_inertial_out,euler_out,pqr_out,unfiltered_euler_out,bodyAcc_out,P_out] =
fcn(gyros,accels,mags,dt_gps,gps_update,XYZ_inertial)

Yo o Fe ke st st sk sk sk sk sk sk sk sk sk sk sk sk ok o o ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk o ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk kok
Yolokkkokokkkkkkkkkkkokk initialize variables skckskskskskskskskskskskokskokkkkkokk
Yo ottt ok ok sk sk skt sk sk sk s s s o s sk ok ok ook ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok keok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ko
persistent xhat;
persistent P;
persistent XYZ_inertial_prev;
persistent XYZ_inertial_prev_prev;
persistent unfiltered_euler;
persistent bodyAcc;
persistent V_inertial;
persistent counter
persistent gyros_old;
if isempty(counter)
counter = 0;
end
if isempty(xhat)
xhat =[0.7934;
0;
0;
0.6088;
[le-6;1e-6;1e-6];];
P=diag([1"2%ones(1,3) .172*ones(1,3)]);
XYZ_inertial_prev = [0;0;0];
XYZ_inertial_prev_prev = [0;0;0];
unfiltered_euler = [0;0;0];
bodyAcc = [0;0;0];
V_inertial = [0;0;0];
gps_alive = 0;
gyros_old = gyros;
end

dt = 0.01; % fundamental time step
g = 9.81;

B = [0.468741473405951;
0.129010679377825;
0.873863648240210] ; %NED

a_n 5;
m_n = .05;

% a_n = 50;

% m_n = .5;
Q_quat = 1le-3;

Q_bias

]
-
@
N

76

tau_gyro = 100;
exptau = exp(-.01/tau_gyro);

R = diag([a_n"2*ones(1,3) m_n"2*ones(1,3)]1);
Q = diag([Q_quat~2*ones(1,3) dt*Q_bias 2*ones(1,3)]);

x_old=xhat;

9% 4 ok ok sk sk s ok sk sk ok ok sk K 3 ok ok 3k K ok ok K K 3K ok ok K 3 ok ok K K ok ok oK K ok ok K K ok ok ok K ok ok 3 ok ok K K K ok ok kK
Tk Hk kR KRR RRRRk DrOpOgate state #kkkkkkikkiokkkkkkkkkkkk
95k ok ok sk sk s ok ok sk ok ok sk sk s ok ok sk ok ok sk sk sk ok ok ok ok ok sk ok sk ok ok ok ok ok ok o ok ok ok ok ok ok ko ok ok ok ok ok kK
counter = counter+l;

p = gyros_old(1)-x_old(5);
q = gyros_old(2)-x_old(6);
r = gyros_old(3)-x_old(7);
normomega = norm([p;q;rl);

normomegainv = inv(normomega) ;
C cos (.5*dt*normomega) ;
Sn = sin(.5*dt*normomega)*normomegainv;

Phi_old_small = [C, -(p *Sn), -(g* Sn), -(r *Sn);

(p *Sn), C, (r* Sn), -(q *Sn);

(g* Sn), -(r *Sn), C, (p* Sn);

(r* Sn), (q *Sn), -(p* Sn), C;1;
x_minus=[Phi_old_small*x_old(1:4); %(predict state)

exptau*x_old(5:7);]1;
if x_minus(1)<0
x_minus(1:4)=-x_minus(1:4);
end
x_minus(1:4) = x_minus(1:4)/norm(x_minus(1:4)); Y%normalize quaternion

%%***

%%************ propogate covariance kkskokokskskokskskokok ok sk sk ok ok k sk ok ok kok ok *k kk
%%***
%old state transition matrix

Phi_old = [1,0,0,-.5%dt, 0, 0;
0,1,0, 0,-.5%dt, 0;
0,0,1, 0, 0,-.5%dt;
0,0,0,exptau, 0, 0;
0,0,0, 0,exptau, 0;
0,0,0, 0, 0,exptau;];

% propogate covariance

P = Phi_o0ld*(P+Q) *transpose (Phi_old);

ShY stk sk e ks sk e ok sk o s o sk o sk ke ok sk s o sk o s o sk o sk ok sk o s ok sk o sk sk sk ok sk ok stk o s ok stk ok sk sk ok sk e ok skok
%Y dkkkkkkk translational Filter kkskokkskokskokokskokskokokskokkokok sk dokskokok s ok skokok sk o kokokok o ok kok
Y% sk sk ks ok o ok sk sk o o ok sk ok s o ok sk ok o o ok sk o s ok sk sk ok o o ok sk o o ok sk o o sk sk ok o ok sk sk o o ok sk ok o sk sk ok ok o ok ok ok
%% check for gps update

if gps_update

7

V_inertial = (XYZ_inertial-XYZ_inertial_prev)/dt_gps;
Cnb = g2dcm(x_minus(1:4));

bodyAcc = Cnb*((XYZ_inertial-2*XYZ_inertial_prev+XYZ_inertial_prev_prev)/(dt_gps~2));

if ((XYZ_inertial_prev_prev(l) == 0) && (XYZ_inertial_prev_prev(2) == 0))
bodyAcc = [0;0;0];

end

XYZ_inertial _prev_prev = XYZ_inertial_prev;
XYZ_inertial_prev=XYZ_inertial;

Volhy shok ko sk sk ok ok ok ok ok sk o sk ok o ok o oK o sk ok ok ok o oK ok ok ok ok o ok ok o ok ok o ok oK ook ok ok ok o oK oK ok K ok ok ook ok ok ok ok oK ook o

Do Fxdkdrokkkokkkkorlkkookk update kokkkskoktokkokioRokokokookotoRkoktoR okt koot kol ok kok

Yol ok okok ok sk ok ok ok ok ok sk ok ok ok K ok o oK ok ok ok ok K ok K ok oK ok K ok ok oK ok K ok Kok Kok K ok o K K ok Kok K ok ok koK ok K ok ok ok o

z= [accels-bodyAcc;

mags;];

q0=x_minus(1);

gql=x_minus(2);

g2=x_minus(3);

g3=x_minus(4);

Bx=B(1);

By=B(2);

Bz=B(3);

% Expected measurement

z_hat = [2xg*x(q0*q2 - ql1*q3);
2xg*x (-q0*ql - q2*q3);

gx(-2%x(q0"2 + 9372) + 1);

Bxx(-1 + 2%q072 + 2*ql172) + 2*By*(ql*q2 + q0*q3) + 2%Bz*(-q0*q2 + ql*q3);
Byx(-1 + 2%q0"2 + 2%q272) + 2xBx*(ql*q2 - qO0*q3) + 2xBz*(qO0*ql + q2%q3);
Bzx (-1 + 2%q0"2 + 2%q372) + 2xBx*(q0*q2 + ql*q3) + 2xBy*(-q0*ql + q2xq3);];

% Linearized measurement matrix H

H=[0, 2*xgx(-1+2%xq072+2%xq372), -4*g*x(q0*ql+q2%q3),0,0,0;
-2*xgx (-1+2%q0"2+2%q3°2) , 0 , 4*gx(-q0*q2+ql1*q3),0,0,0;
4*xg*(q0*ql+q2*q3), —4*g* (-q0*q2+ql*q3), 0 ,0,0,0;

0 ,-4xBx*(q0*q2+q1*q3)-4*By* (-q0*ql+q2*q3) -2*Bz* (-1+2%xq0~2+2%q372) ,

2*By* (-1+2%q0~2+2%q2"2) +4*Bx* (q1*q2-q0*q3) +4xBz* (q0*ql1+q2%*q3),0,0,0;
4xBx* (q0*q2+ql*q3) +4*By* (-q0*ql+q2*q3) +2*Bz* (-1+2xq0~2+2*q3"2), O,

—-2*Bx* (-1+2%q0~2+2%q172) -4*By* (q1*q2+q0*q3) -4*Bz* (-q0*q2+q1*q3) ,0,0,0;
—2*%By* (-1+2%q07~2+2%q2"2) -4*Bx* (q1*xq2-q0*q3) -4*Bz* (q0*ql+q2*q3) ,

2*Bx* (-1+2%q0~2+2*q1"2) +4*By* (q1*q2+q0*q3) +4*Bz* (-q0*q2+q1*q3) ,0,0,0,0;];

K = Pxtranspose(H)*inv(H*xP*transpose(H)+R); % kalman gain

P = (eye(6)-K*H)*P; 7% update covariance

xerror_hat = [zeros(3,1);x_01d(5:7)]+K*(z-z_hat); J update state
xhat (5:7)=xerror_hat(4:6);

xhat (1:4)=quatmult (x_minus(1:4), [1;xerror_hat(1:3)]);

else
xhat = x_minus;
end
if xhat(1)<0
xhat (1:4)=-xhat (1:4);

)
A
A
A
YA
A
)
A
A
A

b
A
A
A
A
A
A
A
A

78

end
xhat (1:4)

xhat(1:4)./norm(xhat(1:4)); Ynormalize quaternion

gyros_old = gyros; %save for next time

Tolhy skokokok ok sk ok ok ok ok ok ok ok ok ok oK ok o ok ook ok oK ok o oK ook ok K ok oK ok ok o oK ok o ok ok o ok ok oK ok o oK oK ok K ok K ok ok ok oK ok ok ok ok o
%o Fxkkdorkkdokokkkkokdkkkkkk unfiltered euler angles sikkkskskokkskokskokkokskokkokskkokkskkok
Volh shok ko sk sk ok sk ok ok ok sk o sk ok ok ok o oK o sk ok ok ok o oK ok ok oK ok o ok oK o ok ok o ok oK o sk ok ok ok o ok oK ok ok ok R ok ok ok ok ok ok ok o ok o

Gbody = accels-bodyAcc;

Gbody = Gbody/norm(Gbody)*.99999999;

Pitch = asin(Gbody(1));

temp = -Gbody(2)/cos(Pitch);

if abs(temp)<1

Roll = asin(-Gbody(2)/cos(Pitch));

else

Roll = pi/2#*sign(temp);

end

if sign(Gbody(3)) >= 0 ¥ if upside down, correct phi
Roll=-Roll-pi*sign(Gbody(2)) ;
end

ct = cos(Pitch); %set up trig for less computation time
st = sin(Pitch);
cp = cos(Roll);
sp = sin(Roll);
Bflat = [ct, st*sp, cp*st;
0, cp, -sp;l*mags; JYrotate mags into phi=0, theta=0

% Yaw = 0.2686 -atan2g(Bflat(2),Bflat(1)); %calculate psi

b

YA

end

unfiltered_euler = [Pitch;Roll;Yaw];

Yol shokokok ok sk ok ok ok ok ok ok ok ok ok o ok o ok ook ok oK ok o oK ok ok K ok o oK ok o oK ok o ok oK o ok ok oK ok o oK ok ok K ok o ok ok ok ok ok ook ok ok o
D Frkksorokskdokokkokkokdokiokokk QUTPUTS Hokkoksokokskokkok ook ok etk sok ok ok ko ok sk ko ok ko
Volh shok ko sk sk ok sk ok ok ok sk o sk ok ok ok o ok o sk ok ok ok o ok ok ok ok ok o ok K o ok ok o ok ok o sk ok ok ok o oK oK ok ok ok o ok sk ok ok ok ok ok ook o
P_out = P;
quatout = xhat(1:4);

euler_out = quat2eul(quatout);

euler_out(1l) = -euler_out(1l); Jreverse sign for GS
bias_out = xhat(5:7);
par_out = gyros-xhat(5:7);

unfiltered_euler_out = unfiltered_euler;
bodyAcc_out = bodyAcc;
V_inertial_out = V_inertial;

YA

A
b

additional functions

fun

ction quat = quatmult(ql,q2)

end

79

% Multiplies two quaternions.
qvl = q1(2:4);

gsl = q1(1);

qv2 = q2(2:4);

gs2 = q2(1);

quatv = cross(qvl,qv2) + gsl*qv2 + gs2*qvl;

quats = gslxqs2 - dot(qvl,qv2);

quat = [quats;quatv];

function quat = quatinv(q)

end

% Inverts a quaternion.
quat = [q(1);-q(2:4)];

function angles = quat2eul(q)

end

qin = q./norm(q);

y=2.%(qin(3,1) .*qin(4,1) + qin(1,1).*qin(2,1));
x=qin(1,1).72 - qin(2,1).72 - qin(3,1).72 + qin(4,1).72;

phi = atan2g(y,x);

theta = asin(-2.*(qin(2,1) .*qin(4,1) - qin(1,1).*qin(3,1)));
y=2.%(qin(2,1) .*qin(3,1) + qin(1,1).*qin(4,1));
x=qin(1,1).72 + qin(2,1).72 - qin(3,1).72 - qin(4,1).72;

psi = atan2g(y,x);

angles = [phi; theta; psil;

function angle = atan2g(y,x)

end

angle = 0.;
if x>0
angle = atan(y/x);

end
if x==0
angle = .5*pi*sign(y);

end
if x<0
angle = pi*sign(y)+atan(y/x);

end

function q = eul2quat(angles)

% converts phi,theta,phi into q

% lifted straight from matlab’s function (with a transposed
cang = cos(angles/2);

sang = sin(angles/2);

output) :

80

q = [cang(:,1).*cang(:,2) .*cang(:,3) + sang(:,1).*sang(:,2).*sang(:,3);
sang(:,1) .xcang(:,2).*cang(:,3) - cang(:,1).*sang(:,2).*sang(:,3);
cang(:,1) .xsang(:,2).*cang(:,3) + sang(:,1).*cang(:,2).*sang(:,3);
cang(:,1) .*cang(:,2) .*sang(:,3) - sang(:,1).*sang(:,2).*cang(:,3)];

end

function decm = g2dcm(q)
% The direction cosine matrix performs the coordinate

% transformation of a vector in inertial axes to a vector in body axes.

qin = q; % don’t need to normalize because it is already done
%qin = quatnormalize(q);

dcm = zeros(3,3);

dem(1,1) = gin(1).72 + qin(2).72 - qin(3).72 - qin(4)."2;
dem(1,2) = 2.%(qin(2).*qin(3) + qin(1).*qin(4));
dem(1,3) = 2.%(qin(2).*qin(4) - qin(1).*qin(3));
dem(2,1) = 2.%(qin(2).%qin(3) - qin(1).*qin(4));
dem(2,2) = gqin(1).7°2 - gin(2).72 + qin(3).72 - qin(4)."72;
dem(2,3) = 2.%(qin(3).*qin(4) + qin(1).*qin(2));
dem(3,1) = 2.%(qin(2).*qin(4) + qin(1).*qin(3));
dem(3,2) = 2.%(qin(3).*qin(4) - qin(1).*qin(2));
dem(3,3) = gin(1).72 - qin(2).72 - qin(3).72 + qin(4)."2;
end

B.3 Full Quaternion Implementation

function [quatout,bias_out,V_inertial_out,euler_out,pqr_out,unfiltered_euler_out,bodyAcc_out,P_out]
= fcn(gyros,accels,mags,dt_gps,gps_update,XYZ_inertial)

Yo ottt ok ok sk sk sk sk sk sk sk s o s o s s ok ok ook ok sk sk sk ks sk sk sk sk s s sk sk ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ke ok ok
Yook dkkkkkkkkkkkkokokk initialize variables kksksksskskskskskkokokkskkkkkkk
Yo ook stk ok ok sk sk sk ok sk sk sk s ok stk sk sk ook sk sk sk ok stk sk s ok stk sk sk ook sksk ok ok stk sk ok sksksk sk ok sk sk ok ok ok
persistent xhat;
persistent P;
persistent XYZ_inertial_prev;
persistent XYZ_inertial_prev_prev;
persistent unfiltered_euler;
persistent bodyAcc;
persistent V_inertial;
persistent counter
if isempty(counter)
counter = 0;
end
if isempty(xhat)
xhat =[0.7934;
0;
0;
0.6088;
[.001;.001;.001];

81

[.00001;.00001;.00001];71;
P=diag([1"2*ones(1,4) .172xones(1,3) .001"2*ones(1,3)]);
XYZ_inertial_prev = [0;0;0];
XYZ_inertial_prev_prev = [0;0;0];
unfiltered_euler = [0;0;0];
bodyAcc = [0;0;0];
V_inertial = [0;0;0];
gps_alive = O;
end

dt = 0.01; % fundamental time step
g = 9.81;

B = [0.468741473405951;
0.129010679377825;
0.873863648240210] ; %NED

a_n = 4;
m_n = .05;
g_n = .00001;

Q_quat = 1le-3;
Q_par = 1le-1;
Q_bias = 1le-3;

R = diag([a_n"2*ones(1,3) m_n"2*ones(1,3) g_n"2*ones(1,3)]1);
Q = diag([Q_quat~2*ones(1,4) Q_pgr~2+*ones(1,3) Q_bias 2*ones(1,3)]1);

x_old=xhat;

9% 4 ok ok sk sk s ok sk sk ok ok sk sk 3k ok sk K ok ok K K 3k ok ok K ok ok K K ok ok oK K 3 ok ok K K ok ok ok K ok ok 3 ok ok Kk K ok ok kK
%%******************** propogate state *kskskskokskokskokskkkkkxkk *kk k% k kk
G5k ok ok sk sk s ok ok sk ok ok ok sk sk s ok ok sk ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ko ok K kK
counter = counter+il;

p = x_old(5);

q = x_01ld(6);

r = x_o0ld(7);

normomega = norm([p;q;rl);
normomegainv = inv(normomega) ;
C = cos(.5*dt*normomega) ;

Sn = sin(.5*dt*normomega)*normomegainv;

Phi_old_small = [C, -(p *Sn), -(g* Sn), -(r *Sn);

(p *Sn), C, (r* Sn), -(q *Sn);

(g* Sn), -(r *Sn), C, (p* Sn);

(r* Sn), (q *Sn), -(p* Sn), C;1;
x_minus=[Phi_old_small*x_old(1:4); %(predict state)

x_01d(5:10);1;
if x_minus(1)<0
x_minus(1:4)=-x_minus(1:4);
end
x_minus(1:4) = x_minus(1:4)/norm(x_minus(1:4)); Y%normalize quaternion

82

LY, ks ks ke e ke sk sk ok sk ko ok o sk sk sk ko ok ok sk sk sk sk ok ok ok o sk sk sk sk ok ok sk sk sk sk ok ok ok o sk ok o
YokrkkAAKKKAKK PTOPOGALE COVATIANCE *kkkikkkakkkakkkdkkkAk kKA hk
019,k sk sk sk ok ok ok sk o sk sk ok ok ok ok ok o sk o sk ook ok ok ok ok ok o sk ook ok ok ok ok o sk o sk ok ok ok ok sk o sk ok ok ok
q0 = x_old(1);

ql = x_01d(2);
g2 = x_01d(3);
g3 = x_o0ld(4);
p = x_o0ld(5);
q = x_0ld(6);
r = x_0ld(7);

omega= norm(x_old(5:7));
C = cos(.b*dt*omega) ;
S = sin(.5*dt*omega) ;

%old state transition matrix
Phi_old = [C, -(p *S)/omega, -(q* S)/omega, -(r *S)/omega,
-(C* dt *omega *(-q"2 *ql+p *q *q2+p* g3 *r+ql* (omega~2-r~2))
+(dt *omega”2 *p* qO0+2* q~2 *ql-2 *p *q* q2-2 *p* q3* r+2 xql* r~2)* S)/(2 *omega~3),
-(Cx dt *omega *q* (p*x ql+gq* g2+q3 *r)+omega”2* (dt *q *q0+2 *q2) *S
-2 *q *(p *ql+q *q2+q3 *r)* S)/(2 *omega”3),
-(C *dt* omega* r *(p* ql+q *q2+q3 *r)+omega”2 *(2 *q3+dt *q0* r) *S
-2% r* (p *ql+q *q2+q3* r) *S)/(2 *omega”3),0,0,0;
(p *S)/omega, C, (r* S)/omega, -(q *S)/omega, (C *dt *omega"3 *q0
-C *dt xomega *(q~2 *qO+p* q *q3+r *(-p *q2+q0* r))-dt* omega”2 *p *ql* S
+2% (q"2% qO+p *q *q3+r* (-p *q2+q0* r))* S)/(2 *omega~3),
(C *dt *omega* g* (p* qO-g* g3+q2* r)-(omega~2 *(dt* q *ql+2 *q3)
+2 *q *(p* q0-q *q3+q2 *r))* S)/(2* omega”3), (Cx dtx omega* r* (p *qO0-g* q3+q2* r)
+omega”2 *(2 *q2-dt* ql* r) *S-2% r* (p *q0-q *q3+q2* r)* S)/(2 *omega~3),0,0,0;
(g* S)/omega, -(r *S)/omega, C, (p* S)/omega, (C* dt* omega *(p *(q* q0-ql *r)
-q3* (-omega~2+q~2+r"2))+(-p *(2 *g*x qO+dt* omega™2 *q2-2 *ql* r)
+2% q3* (q"2+r~2))* S)/(2* omega”3),
(C *dt *omega *qx* (g* qO+p* g3-ql* r)+omega”2 *(2* qO-dt *q *q2)* S
-2 *q *(q *q0+p *q3-ql *r) *3)/(2* omega”3), (C* dt *omega* r *(gq* qO+p*x gq3-ql* r)
-(2x r x(g* qO0+p *q3-ql *r)+omega”2 *(2% ql+dt* g2 *r))* S)/(2 *omega~3),0,0,0;
(rx S)/omega, (q *S)/omega, -(p*x S)/omega, C, (Cx dt *omega* (p *(q *ql+q0 *r)
+q2 *(-omega”2+q"2+r~2))-(px (2 *q *ql+dt *omega”2 *q3+2 *q0 *r)
+2% q2 *(q"2+r~2)) *S8)/(2 *omega~3), (C *dt* omega* q *(q *ql-p *q2+qO0* r)
+omega”2* (2 *ql-dt* q *q3)* S-2* q *(q *ql-p *q2+q0* r) *S)/(2 *omega”3),
(C* dt* omega* r*x (q* ql-p*x q2+q0* r)
-2 *r* (q *ql-p *q2+q0* r) *S+omega”2 *(2* qO-dt* g3* r)* S)/(2* omega~3),0,0,0;
0, 0, 0, 0, 1,0,0,0,0,0;

B

H H

0,1,0,0,0,0

> > s 0,0,1,0,0,0
, , , 0,0,0,1,0,0;
0,0,0,0,1,0
0,0,0,0,0,1

B B B

O~P O O
O O O O O
O O O O O
O O O O O

B B B

% propogate covariance
P = Phi_old*(P+Q)*transpose (Phi_old);

%% 3k 3k >k >k K 3K 3K 3K 5K 5k 5k 5k 5k 3k 5k 5k 5k %k %k 3K 3K 3K 5k 3k 5k 5k 5k 5k 5k 5k %k %K K 3K 5K 5K 5k 3k 3k %k 5k 5k 5k %k %K K 3K 3K 5K 5K 5k 3k %k %k 5k >k %k %k % K 3K >k 5 > % % %k %k >k % %

83

%% Fkkkkkkk translational Filter skkskskkskskskskskskskokokokokoksksk sk sk sk ko kok sk kokokokokokok ok ok ok ok ok ok ok
Yo% Fe ok st sk stk sk sk sk sk sk ok sk sk sk o o o ok sk sk sk sk sk sk sk sk sk sk ok ok sk sk e o o sk sk sk sk sk sk sk sk sk sk sk sk sk sk s ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok
%% check for gps update

if gps_update
V_inertial = (XYZ_inertial-XYZ_inertial_prev)/dt_gps;
Cnb = g2dcm(x_minus(1:4));

bodyAcc = Cnb*((XYZ_inertial-2+XYZ_inertial_prev+XYZ_inertial_prev_prev)/(dt_gps~2));

if ((XYZ_inertial_prev_prev(1l) == 0) && (XYZ_inertial_prev_prev(2) == 0))
bodyAcc = [0;0;0];

end

XYZ_inertial_prev_prev = XYZ_inertial_prev;

XYZ_inertial _prev=XYZ_inertial;

Y sk sk ok ok ok ok ok sk ok K oK K ok K ok KKK KoK K oK KKK KK SR o K S KKK KSR K SR KKK oK K ok K KKK oK ok K o K
Dotk Hokskskskokskkskokskskokoksokokokokokok UpAate kkskokskokskok sk kokok sk sk sk kot ok sk s sk skok o ks sk sk ok o ok
U ok sk sk ok ok ok ok ok ok ok ook o ok oK ok ok ok oK o ok K ok ok ook oK ok K ok K ok ok oK oK K ok K ok ok ok oK ok K ok K ook oK oK K ok K ok K
z= [accels-bodyAcc;

mags;

gyros] ;

q0=x_minus(1);
ql=x_minus(2);
g2=x_minus(3);
g3=x_minus (4) ;
Bx=B(1);
By=B(2);
Bz=B(3);
% Expected measurement
z_hat = [2xgx(q0*q2 - ql*q3);
2%g*(-q0*ql - q2%q3);
gx(-2x(q0"2 + g372) +
Bxx(-1 + 2*%q072 + 2%xql1~2)
Byx (-1 + 2%q0°2 + 2%q2°2)
Bzx (-1 + 2%q07"2 + 2%q372)
x_minus (5)+x_minus(8) ;
x_minus (6)+x_minus (9) ;
x_minus (7)+x_minus (10);];
% Linearized measurement matrix H

)3

2xBy*(ql*q2 + q0*q3) + 2*Bz*(-q0*q2 + ql1*q3);
2xBx*(ql*q2 - q0%q3) + 2*Bz*(qO0*ql + gq2*q3);
2*Bx* (q0*q2 + q1%q3) + 2*By*(-q0*ql + q2*q3);

+ + + -

H=[2%g*q2, -2xg*q3, 2%g*q0, -2xg*ql, 0,0,0,0,0,0;
-2%g*ql, -2*g*xq0, —2%g*q3, -2xg*q2, 0,0,0,0,0,0;
-4%g*q0, 0, 0, -4xg*q3, 0,0,0,0,0,0

4xBx*q0-2*Bz*xq2+2*By*q3, 4*Bx*ql+2*By*q2+2*Bz*q3, -2xBz*q0+2*By*ql, 2*By*q0+2*Bz*ql, 0,0,0,0,0,0
4%By*q0+2xBz*ql-2%Bx*q3, 2*Bz*xq0+2*Bx*q2, 2%Bx*ql+4*xBy*q2+2%Bz*q3, -2%Bx*q0+2*Bz*q2, 0,0,0,0,0,0;
0,0,0,0,0,0

4%Bz*xq0-2*By*ql+2*%Bx*q2, —-2*By*qO0+2*Bx*q3, 2%Bx*q0+2*By*q3, 2*Bx*ql+2*By*q2+4*Bz*q3, 0,0,0,0,0,0;
0, 0, 0, 0, 1,0,0,1,0,0;
0, 0, 0, 0, 0,1,0,0,1,0;
0, 0, 0, 0, 0,0,1,0,0,1;1;

K = Pxtranspose (H)*inv(H+xP*transpose(H)+R); % kalman gain
P = (eye(10)-K*H)*P; % update covariance
xhat = x_minus+K*(z-z_hat); J update state

84

else

end

A
A
b
A
A
YA
A
A
b
A
A
A
A
b
%
A
A
A
b
%
A
A

YA

z2=gyros;
z2_hat = [x_minus(5)+x_minus(8);
x_minus (6)+x_minus(9);
x_minus (7)+x_minus (10) ;] ;
H2 = (0,0,0,0,1,0,0,1,0,0;
0,0,0,0,0,1,0,0,1,0;
0,0,0,0,0,0,1,0,0,1;1;
K2 = Pxtranspose(H2)*inv (H2*P*transpose(H2)+R(7:9,7:9)); % kalman gain
P = (eye(10)-K2xH2)*P; % update covariance
xhat = x_minus+K2#*(z2-z2_hat); J update state

if xhat(1)<0
xhat (1:4)=-xhat(1:4);
end
xhat(1:4) = xhat(1:4)./norm(xhat(1:4)); %normalize quaternion

%% 3k >k 3k 5k 3k 5k >k 5k >k 3k 3k 5k 5k 5k 5k >k 5k >k 5k 3k 5k 5k >k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k 5k 5k 5k 5k >k 5k >k 3k >k 5k 5k >k 5k >k 3k 5k 5k 5k %k 5k >k >k >k %k 5k >k 5k %k 5k %k %k >k %k >k >k >k %k
T wxkkkkkkkkkkkRkkkkkk unfiltered euler angles sokskokskskoskskokskskokkkskokokokokokkokkokk
U sk sk sk ok ok ok ok sk sk ok R ok K ok ok ok ok ok K ok K KKK K oK R ok K ok K ok K R ok K ok ok ok oK ok K ok K Sk K ok ok K ok K

Gbody = accels-bodyAcc;

Gbody = Gbody/norm(Gbody)*.99999999;

Pitch = asin(Gbody(1));

temp = -Gbody(2)/cos(Pitch);

if abs(temp)<1

Roll = asin(-Gbody(2)/cos(Pitch));

else

Roll = pi/2+*sign(temp);

end

if sign(Gbody(3)) >= 0 ¥ if upside down, correct phi
Roll=-Roll-pi*sign(Gbody(2));
end

ct = cos(Pitch); %set up trig for less computation time

st = sin(Pitch);

cp = cos(Roll);

sp = sin(Roll);

Bflat = [ct, st*sp, cp*st;

0, cp, -sp;l*mags; JYrotate mags into phi=0, theta=0

Yaw = 0.2686 -atan2g(Bflat(2),Bflat(1)); %calculate psi

unfiltered_euler = [Pitch;Roll;Yaw];

YSh Kook ko sk ok ok sk ok ok sk ok ok ok ok ok sk K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok KK ok oK K ok oK K ok KK oK KK KKK oK KK KoK KR KKK KKK KK oK
Dtk Hokskskokokkkskokskkokokkokokokokok OUTPUTS sokokskskokok sk sk ok ok sk sk ok ok sk sk ok ook sk sk ok ok o ook
Ytk Hokokkkok ko sk ok ok sk ok sk ok ok sk ok sk ok sk ok sk ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
P_out = P;

quatout = xhat(1:4);

euler_out = quat2eul(quatout);

euler_out(1) = -euler_out(1); Yreverse sign for ground station

85

bias_out = xhat(8:10);
pgr_out = xhat(5:7);

unfiltered_euler_out = unfiltered_euler;
bodyAcc_out = bodyAcc;

V_inertial_out = V_inertial;

end

%

5 additional functions

YA

function angles = quat2eul(q)
qin = q./norm(q);

y=2.%(qin(3,1) .*qin(4,1) + qin(1,1).*qin(2,1));
x=qin(1,1).72 - qin(2,1).72 - qin(3,1).72 + qin(4,1).72;
phi = atan2g(y,x);

theta = asin(-2.*(qin(2,1) .*qin(4,1) - qin(1,1).*qin(3,1)));

y=2.%(qin(2,1) .*qin(3,1) + qin(1,1).*qin(4,1));
x=qin(1,1).72 + qin(2,1).72 - qin(3,1).72 - qin(4,1).72;
psi = atan2g(y,x);

angles = [phi; theta; psil;
end

function angle = atan2g(y,x)
angle = 0.;
if x>0
angle = atan(y/x);

end
if x==0
angle = .b5*pi*sign(y);

end
if x<0
angle = pi*sign(y)+atan(y/x);

end
end

function q = eul2quat(angles)
% converts phi,theta,phi into q
% lifted straight from matlab’s function (with a transposed output):
cang = cos(angles/2);
sang = sin(angles/2);

q = [cang(:,1).*cang(:,2) .*cang(:,3) + sang(:,1).*sang(:,2).*sang(:,3);
sang(:,1) .*cang(:,2).*cang(:,3) - cang(:,1).*sang(:,2).*sang(:,3);
cang(:,1) .xsang(:,2).*cang(:,3) + sang(:,1).*cang(:,2).*sang(:,3);
cang(:,1) .*cang(:,2) .*sang(:,3) - sang(:,1).*sang(:,2).*cang(:,3)];

end

86

function decm = g2dcm(q)
% The direction cosine matrix performs the coordinate
% transformation of a vector in inertial axes to a vector in body axes.

qin = q; % don’t need to normalize because it is already done
%qin = quatnormalize(q);

dcm = zeros(3,3);

dem(1,1) = gin(1).72 + qin(2).72 - qin(3).72 - qin(4)."2;
dem(1,2) = 2.%(qin(2).*qin(3) + qin(1).*qin(4));
dem(1,3) = 2.%(qin(2) .*qin(4) - qin(1).*qin(3));
dem(2,1) = 2.%(qin(2).*qin(3) - qin(1).*qin(4));
dem(2,2) = qin(1).7°2 - gin(2).72 + qin(3).72 - qin(4).72;
dem(2,3) = 2.%(qin(3).*qin(4) + qin(1).*qin(2));
dem(3,1) = 2.%(qin(2).*qin(4) + qin(1).x*qin(3));
dem(3,2) = 2.%(qin(3).*qin(4) - qin(1).*qin(2));
dem(3,3) = qin(1).72 - qin(2).72 - qin(3).72 + gin(4)."2;

end

87

Bibliography

[1]

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASMFE

Journal of Basic Engineering, no. 82 (Series D), pp. 3545, 1960.

M. S. Grewal and A. P. Andrews, Kalman Filtering : Theory and Practice Using MATLAB. Wiley-

Interscience, January 2001.

G. F. Franklin, D. J. Powell, and M. L. Workman, Digital Control of Dynamic Systems (3rd Edition,).

Prentice Hall, December 1997.

M. Sidi, Spacecraft Dynamics and Control, p. 323. Cambridge: Cambridge University Press, 1997.

J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace

and Virtual Reality. Princeton University Press, August 2002.

D. Gebre-Egziabher and G. Elkaim, “Mav attitude determination by vector matching,” Aerospace and

Electronic Systems, IEEE Transactions on, vol. 44, pp. 1012-1028, July 2008.

M. L. Lizarraga, “Autonomous landing system for a UAV,” Master’s thesis, Naval Postgraduate School,

Monterey, CA, USA., March 2004.

