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1 Introduction

1.1 Silicon Detectors

High energy particle physics requires not only a sophisticated theoretical framework,

but also the latest and most advanced engineering technology. In order to create and track high

energy particles, huge particle accelerators must smash together beams of matter and antimatter

at speeds close to the speed of light. When the beams collide, a shower of high energy particles

shoot off from the collision point. In elementary particle physics experiments silicon is regarded

as the best material choice for detecting high energy particles. The inner detector of the ATLAS

experiment at the Large Hadron Collider will employ several of these silicon detectors.

Silicon detectors, shown in Figure 1.1, are semiconductor devices which are used to detect

high energy particles. They are complicated diode devices containing p-n junctions, as seen in

Figure 1.2. When a voltage is applied to the device, the mobile free carriers are swept from the

device leaving an area known as the space charge region which is where the active electric field

Figure 1.1: Top down view of a Silicon Strip detector
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Figure 1.2: Cross section view of a silicon strip detector

Figure 1.3: Illustration showing electron-hole pair generation from an ionizing particle. The charge
carriers are collected by the Al strips and carried to the readout electronics

of the device can be found. A high energy particle passing through a silicon detector will create

electron/hole pairs along its path, as shown in Figure 1.3. Under the influence of an electric field,

these liberated charges will travel to the aluminum readout strips of the detector, amplified and

then sent to readout electronics. Because the detector is arranged in strips, a high energy particle’s

position can be determined with very hig resolution when it passes through a detector.

Due to their proximity to the collision point, silicon detectors at ATLAS will be exposed to

high amounts of radiation. Radiation will damage the detector in a number of ways. One of the

largest effect is an increase in the leakage current, causing irradiated detectors to become very noisy

unless operated at low temperatures. The other noticeable effect is a change in the space-charge

density of the device. This will cause a change in the depletion voltage, so that highly irradiated

detectors must be operated at very high voltages. For this reason, the study of radiation damage

in silicon detectors is very important for the longevity of silicon detectors at the LHC.
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1.2 Experimental Set-Up

Admittance measurements have been performed on silicon pad detectors produced of

both p-on-n and n-on-p and FZ and MCz material. The un-irradiated sensors were produced by

MICRON at Sussex, UK, on 300µm FZ wafers of about 20kΩcm resistivity and MCz wafers of

about 2kΩcm resistivity and by Hamamatsu Photonics (HPK) at Hamamatsu City, Japan, on

330µm FZ wafers of about resistivity. The neutron irradiation was performed at Ljubljana and

pion irradiation was performed at PSI in Switzerland.

The charge collection and C-V measurements on microstrip detectors have been performed at

SCIPP, UC Santa Cruz. The CCE(V) investigations have been carried out with a 90Sr beta source,

described in [1]. CCE(V) measurements were taken up to 1100V. The Admittance experimental

set-up is based on a HP 4284A LCR meter coupled with the HP 16065A text fixture (modified to

permit biasing with voltages up to 700 V). Voltage sourcing and current monitoring are performed

through a computer controlled Keithley 2410 HV supply. In order to reduce the leakage current

noise, CCE(V) taken at -20 oC. More details on the experimental system for CCE(V) are given in

[2].

The temperature was varied in between admittance measurements, ranging from 0 oC up to

20 oC in 5 oC steps. During each measurement, the temperature was kept constant using a cooling

set-up that included peltiers for cooling, and liquid nitrogen gas boil off to remove moisture from

the air so no ice forms on the detectors. Several frequencies, ranging from 100 Hz to 2 MHz,

of the AC signal imposed by the LCR meter were cycled through at the beginning of each new

voltage run. Admittance measurements were only taken up to 630V and for detectors that did not

deplete before this, the depletion voltage was taken from previous data on corresponding detectors.

Simulations were produced assuming two dominant deep levels, although one deep level was clearly

more dominant than the other.



4

2 Un-irradiated Detector Model

The extraction of the doping concentrations is fairly straightforward in un-irradiated

detectors. Shallow dopants are fully ionized at room temperature, and the leakage current has a

negligible effect on the electric field in the device. This reduces the extraction of doping concen-

trations to a simple electrostatics problem, where thermal effects can be neglected. Due to the

simplicity of the problem, a solution incorporating the geometry of a given detector , shown in

Figure 2.1, can be included.

In un-irradiated detectors, 1/C2(V ) curves are used to extract the doping density of a detector.

Starting with Poisson’s equation in two dimensions

∇2V (x, y) = −qNeff (y)
ε

(2.1)

subject to the following boundry conditions [3]

V (x, y) = V (x + p, y) (2.2)

V (x, 0) = Vbias, |x| ≥ (p− w)/2 (2.3)

V (x, d) = 0 (2.4)

∂

∂y
V (x, y)

∣∣∣
y=0

= 0, |x| ≤ (p− w)/2 (2.5)

where x is the coordinate across the detector, y the coordinate in the direction of the depth, d is

the depleted depth, p and w are the pitch and width of the detector respectively.

An analytic solution to these equations is shown in Figure 2.2. These boundary conditions

only incorporate the geometry of the detector and do not deal with special cases such as p-spray or
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Figure 2.1: Coordinate view within a strip detector. The x axis represents the coordinate across
the detector while the y axis is in the direction of the depth of the detector

 

V

y x

Figure 2.2: A 2-D potential solution for a strip detector determined from the appropriate boundry
conditions
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p-stop that may be present in some detectors. For these cases, a numerical approach is needed. In

[4], a 2D numerical solution is developed based on finite difference methods, and can be modified

to incorporate such special cases mentioned above.
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3 Un-Irradiated Detector Results

In order to simulate C-V curves we introduce an additional boundry condition,

∂

∂y
V (x, y)

∣∣∣
y=d

= 0 (3.1)

This will allow one to calculate Vbias given a trial doping density Neff and depleted depth d. This

can be combined with the equation for a parallel plate capacitor

C = ε
A

d
(3.2)

where ε is the permittivity of silicon and A is the area of the detector.

1/C and 1/C2 voltage curves can be simulated by varying d and Neff (y) is then adjusted until

the simulated C-V curve matches the measured C-V curve. A plot of measured and simulated

1/C2(V ) curves, along with the extracted Neff (y) that would reproduce such a curve for a n-

on-p-type Float Zone (FZ) detector of thickness 300µm, are shown in Figure 3.1 and Figure 3.2

respectively. The simulation extracts a reasonable doping density and reproduces the p+ layer

that is expected near the backplane of the detector.

By comparing the C-V curves of a diode with that of a strip detector of the same wafer, it can

be seen that the strips seem to offset the curves by a small amount, and thus increase the depletion

voltage. Figure 3.3 shows the increase in depletion voltage due to the strips that can be seen as

an offset in 1/C2(V ) curves at low voltage, compared to a diode where no offset is observed. This

offset in the curves is colloquially referred to as the ”foot”, and is defined as the difference between

the depletion voltage of a diode and strip detector of the same type. Figure 3.4 shows 1/C(V )
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determined from the 2-D potential solution

displaying how the ”foot” changes with pitch and strip width. The 2-D solution for the potential

predicts an increase to the depletion voltage due to the strips of the detector. By assuming that

the increase in depletion voltage is the same as the voltage range of the ”foot”, we can predict

the voltage range of the ”foot” by varying the pitch and strip width. The predicted voltage range

of the ”foot” for detectors of different pitch and strip width is shown in Figure 3.5. The theory

correctly predicts the effect of the pitch and strip width on the voltage range of the ”foot”.
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4 Irradiated Detector Model

Radiation damage creates defects, or traps, in the band gap that alter detector properties.

In the space charge region, these defects are responsible for the generation and trapping of the

leakage current. It is trapping of the leakage current that leads to a steady state filling of the defects

by free charge carriers in the space charge region of an irradiated detector. In the undepleted bulk,

charge neutrality approximately holds and the bulk can be treated as being in thermal equilibrium,

where the leakage current does not influence the filling of traps.

There are two types of defect states. Donors are defects that are charged when occupied

by holes, and neutral when occupied by electrons. Acceptors are defects that are neutral when

occupied by holes, and charges when occupied by electrons. The occupancy of defects in thermal

equilibrium is governed by the Fermi level, while in a steady state the occupancy is governed by

the free carrier concentrations in the conduction and valence bands.

4.1 Basic Semiconductor Equations

In order to determine the doping profile in irradiated detectors, the following basic

equations for a semiconductor with an arbitrary number of defects must be satisfied [5].

The Electric Field is given by Poisson’s equation,

d

dx
E(x) =

q

ε

Ndopant +
∑

Donors

pt(x)−
∑

Acceptors

nt(x)

 (4.1)
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where Ndopand is the initial concentrations before irradiation, nt and pt are the concentration of

trapped electrons and holes respectively, for a trap with concentration Nt at an Energy Et.

Neglecting diffusion and tunneling effects, the current is defined by,

j = jn + jp (4.2)

where,

jn = qµnn(x)E(x) (4.3)

jp = qµpp(x)E(x) (4.4)

are the electron and hole current components. Here µn,p represents the mobility of electrons and

holes respectively, q is the elementary charge of the electron, and n(x), p(x) are the free carrier

concentrations. The current must also satisfy

d

dx
j = 0 (4.5)

Combining equations (4.2) and (4.5) we get,

d

dx
jn = − d

dx
jp (4.6)

The continuety equations for a semiconductor are,

∂n

∂t
= Un +

1
q

d

dx
jn (4.7)

∂p

∂t
= Up −

1
q

d

dx
jp (4.8)

where Ue and Uh are the net electron and hole generation/recombination rates and are given by,

Un =
∑

traps

en,tnt − ncn,tpt (4.9)

Up =
∑

traps

ep,tpt − pcp,tnt (4.10)
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where en, ep are the emission rates and cn, cp are the capture probabilities for electrons and holes

respectively and are defined by,

en,p = cn,pNc,ve∓(Ec,v−Et)/kT (4.11)

cn,p = vth
n,pσn,p (4.12)

where Nc,v is the density of states in the conduction and valence bands, vth
n,p is the thermal velocity

of free carriers and σn,p is the capture cross section for electrons and holes respectively.

4.2 Equilibrium Requirements

In thermal equilibrium, the occupancy of defect levels is given by Boltzmann’s statistics.

Here, the Fermi Energy dictates the filling of defect levels. The probability of the occupancy of a

band orbital at an energy E is given by the Fermi-Dirac distribution,

fe =
1

1 + e(E−Ef )/kT
(4.13)

where Ef is the Fermi Energy.

The probability of defects is not simply given by the Fermi-Dirac distribution. A Donor state

can be occupied by an electron of either spin up or down, so there are two orbital at the same

energy. The difference from band oribitals arises because once an electron is bound to a Donor

state, that state cannot take on another electron of opposite spin. The probability that a Donor

at energy ED is occupied by electron is given by

fD =
1

1 + 1
2e(ED−Ef )/kT

(4.14)

and occupied by a hole by

fD
+ =

1
1 + 2e(Ef−ED)/kT

(4.15)

The probability that an Acceptor at energy EA is occupied by an electron is slightly different and

is given by

fA
− =

1
1 + 2e(EA−Ef )/kT

(4.16)
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Figure 4.1: The four processes involved in generation and recombination through a deep defect at
energy Et: a.) emission of an electron into the conduction band, b.) capture of an electron from
the conduction band, c.) capture of a hole from the valence band, d.) emission of a hole into the
valence band.

and for holes

fA =
1

1 + 1
2e(Ef−EA)/kT

(4.17)

Charge neutrality requires that

n +
∑

Acceptors

fA
−Nt = p +

∑
Donors

fD
+Nt (4.18)

which just states that the total number of trapped and free electrons is equal to the total number

of trapped and free holes in our device.

4.3 Steady State Requirements

The occupancy of defects under steady state conditions is determined from Shockley

Read Hall (SRH) statistics. Each defect can emit and capture electrons from the conduction band,

as well as emit or capture holes from the valence band. These four competing processes, shown

in Figure 4.1 determine the steady state filling of traps. The number of trapped charge carriers

for a given defect can be determined from the steady state requirements. For a given defect, the
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concentration of trapped electrons plus the concentration of trapped holes must equal concentration

of the defect, which gives

Nt = nt + pt (4.19)

Under steady state, equations (4.7) and (4.8) become,

∂n

∂t
= Ue +

1
q

d

dx
je = 0 (4.20)

∂p

∂t
= Uh −

1
q

d

dx
jh = 0 (4.21)

Combining (4.20) and (4.21) and inserting (4.6) gives,

Ue = Uh (4.22)

i.e. the net generation/recombination rates for electrons and holes must be equal. This is the

necessary condition which must be satisfied under a steady-state. The number of trapped charge

carriers can be determined from inserting in equations (4.9), (4.10), and (4.19) into (4.22), resulting

in,

nt = Ntfs = Nt
cnn(x) + ep

cnn(x) + en + cpp(x) + ep
(4.23)

where fs is the occupancy of electrons under a steady state.

4.4 Depletion Depth and the Debey Length

There are three main regions in biased detector; the depletion or space charge region, the

undepleted bulk, and the transition region between these two areas whose length is given by the

Debey Length. In unirradiated devices, the debey length is essetially zero, and the trasition between

depleted and undepleted bulk is abrupt. In irradiated devices, the free carrier concentration at the

edge of the space charge region is changed, causing a change in the Debey length.

The transition region is characterized by the Debey length. The electric field will not just

disappear at the depletion layer edge, but will gradually dissipate into the undepleted region. It
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has to do with the fact that at the edge of the depletion region, there are free carriers that have

yet to be swept from the detector. These free carriers act as a shield for the undepleted region

from the electric field present in the space charge region. The larger the number of free carriers,

the more shielding there is, leading to a smaller transition region. If the free carrier concentration

is small, then they will shield the undepleted bulk less, which would lead to a larger transition

region. At about one Debey length away from the depleted region, the electric field is very small,

and we can think of the region beyond this to have zero electric field. The rest of the detector past

the Debey length can then be treated as undepleted neutral bulk.

The maximum depletion depth of the detector will be limited by the Debey length. As the

bias voltage is increased, the neutral undepleted bulk will shrink. Once the length of this region

hits zero, then one cannot deplete the detector any more. What is left is the space charge region

and the transition region. So the maximum depth of the space charge region is given by,

dmax = W − LD (4.24)

where W is the total thickness of the detector and LD is the Debey length. The Debey length can

be determined from the flatband capacitance by [7],

Cf = A

(
εq2nf

kT

)1/2

= εA/LD (4.25)

where A is the area of the detector, and nf is the free carrier concentration at the depletion layer

edge. Admittance measurements are used to determine Cf and thus LD.

4.5 Conductance and Capacitance Measurements

When a reversed bias voltage is applied to a detector, mobile charge carriers are swept

from the device, creating an active region called the space charge region with a thickness d. By

superimposing a small AC voltage on top of the bias voltage, the vicinity of d can be examined.

Each trap level will interact with the AC voltage differently depending on the lifetime of the trap.
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The defects will only be active when the frequency of the AC signal corresponds to the emission

rate of the defects. At high frequencies, the defect levels will not have enough time to respond to

the signal, and at very low frequencies all defects will be active.

Consider the vicinity of the depletion layer edge at d. Deep defect levels will cross the Fermi

Energy of the bulk at a distance xt, as illustrated in Figure 4.2. At xt, the occupancy of the level

will change from its equilibrium value to its steady state value in the space charge region which is

given in the previous section. The AC signal imposed on the detector will give rise to a frequency

dependent complex capacitance as the occupancy of the defect switches between its equilibrium

value and its value in the space charge region. Since the minority free carrier density is much

smaller than the majority free carrier density, we can neglect minority carrier response to the AC

signal in the bulk. In order to recieve the signal produced by generation/recombination of the deep

levels, the frequency must be such that there is sufficient time for the deep level to emit free charge

carriers. The relaxation time associated with this level for n-type material is given by [6][7],

τt = [2en,t]
−1 (4.26)

and for p-type

τt = [2ep,t]
−1 (4.27)

Consider the complex admittance, Y , of the device where the series resistance and capacitance

are turned into a conductor and capacitor in parallel,

Y = Z−1 = Gp + jωCp (4.28)

where Gp and Cp are the conductance and capacitance in parallel to each other. The complex

admittance can be used to determine trap parameters such as lifetimes, Energies, capture cross

sections, and concentrations. In order to model the contribution to the conductance and capaci-

tance, an equivalent circuit model taking into account the contribution of generation-recombination

and crossover capacitance to the admittance must be used. An equivalent circuit for bulk trap
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Figure 4.2: Energy band diagram for a junction containing deep level with the corresponding
equivalent circuit. The generation/recombination contribution to the admittance of each deep
level can be modeled as a capacitor and resistor in series
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contribution to the admittance is derived in both [6][7]. In this model, Gp/ω and Cp are given by,

Gp/ω =
N∑

t=1

Cbt
ln(1 + (ωτt(1− fs))

2)
2ωτt(1− fs)

(4.29)

and

Cp = Chf +
N∑

t=1

Cbt
tan−1(ωτt(1− fs))

ωτt(1− fs)
(4.30)

where Chf is the high frequency capacitance given by [7][8],

Chf = (1/Cd + 1/Cf )−1 (4.31)

where Cd is the capacitance of the space charge region and Cf is the flatband capacitance associated

with the Debey length. Cbt is the capacitance of the number of active bulk trap levels within a

few kT of the crossover and is given by [3],

Cbt(V ) =
√

2Cd(V )Nact

Nd
(1− vt/uf )−1/2 (4.32)

where vt and uf are the energies of the trap level and bulk Fermi level measured from the midgap,

Nact is the density of active or charges defects and Nd is the original dopant density. We take the

capacitance at depletion to be

Cd(Vdep) = εA/(W − Ld) (4.33)

where W is the width of the detector. If we combine equations (4.32) and (4.33) then we find

d =
Cbt(Vdep)
Cbt(V )

(W − Ld) (4.34)

which gives the depleted depth of an irradiated silicon detector. The frequency ωp where the Gt/ω

curve is peaked is given by,

ωpτt(1− fs) = 1.98 (4.35)

While this model reproduces the general form of our data, it fails to give a quantitative fit. The

measured curves are broader than predicted. Our model must be modified to quantitatively de-

scribe our conductance and capacitance curves.
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The model presented above can be extended by including a dispersion of trap lifetimes [6].

There are two models that have been proposed to include time constant dispersion; one incorporates

a fluctuation of band bending at the depletion layer edge caused by a random distribution of point

charges located at the surface, and the other incorporates a distribution of capture probabilities

caused by the chemical environment near the defect sites. The former will be used in this paper

to account for time constant dispersion.

Consider a random spatial distribution of point charges located at the surface of the detector.

This non-uniform spatial distribution of charge will lead to a spatial variation of the band bending

at the depletion layer edge. This variation in band bending will result in different response times

from the defect levels near the depletion layer edge. This will then lead to a dispersion of time

constants that is related to the amount of band bending variation. By integrating over all possible

band bending values, the conductance and capacitance contribution of a trap state to include band

bending variation is given by [6],

Gt(ω)/ω =
Cbt(2πσs

2)−1/2

2ξ

∫ ∞
−∞

exp

(
− η2

2σs
2

)
exp(−η)ln(1 + ξ2exp(2η))dη (4.36)

and

Ct(ω) =
Cbt(2πσs

2)−1/2

ξ

∫ ∞
−∞

exp

(
− η2

2σs
2

)
exp(−η)tan−1(ξexp(η))dη (4.37)

where σs
2 is called the variance of band bending, and ξ = ωτt(1− fs). Here σs and Cbt are taken

to be free parameters and are extracted from Gp/ω curves. Once σs is known, the lifetime τt is

given by

ξp = ωpτt(1− fs) (4.38)

where the ξp is determined by,

∫ ∞
−∞

exp

(
− η2

2σs
2

)
exp(−η)

(
2ξpexp(2η)

1 + ξp
2exp(2η)

ln(1 + ξ2exp(2η))
)

dη = 0 (4.39)

which can be solved numerically. It should be pointed out that when the bias voltage is increased,

the depletion layer edge will move further away from the surface. This will cause surface effects to
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diminish as the voltage is increased. As a result, we expect the variance of band bending, σs will

tend to zero at sufficiently high voltages. The total conductance of our device is given by,

Gp(ω)/ω =
∑

traps

Gt(ω)/ω (4.40)

and the capacitance by,

Cp(ω) = Chf +
∑

traps

Ct(ω) (4.41)

4.6 Extraction of Trap Parameters from the Admittance

The energy of each trap level can be determined from the temperature dependence of

the peak frequency, ωp. We know that,

ωp = ξ/τt = ξ2cn,pNc,vexp[∓(Ec,v − Et)/kT ] ∝ T 2exp[∓(Ec,v − Et)/kT ] (4.42)

If we take measurements at temperatures T1 and T2, and find peaks at ω1 and ω2 respectively, we

can then write,

Ea = k

(
T1T2

T1 − T2

)
ln

(
ω1

ω2

(
T2

T1

)2
)

(4.43)

where Ea = ±(Ec,v −Et) is activation energy of the trap level taken with respect to the majority

carrier band edge. Once the trap energy and majority carrier emission rate is known, the majority

carrier capture cross section can be calculated using equations (4.11) and (4.12).

The density of charged traps, Nact, can be determined by adjusting Cbt so that simulated

curves fits of measured curves. Once Cbt is known, equation (4.32) can be used to determine Nact.
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Figure 4.3: Measured and simulated C and G/ω as a function of frequency taken at 100V. Simu-
lation assumed two main trap levels.
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Figure 4.4: Measured and simulated C and G/ω as a function of frequency taken at 200V. The
low frequency capacitance measurement is lower than expected
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5 Irradiated Detector Results

Admittance measurements were taken on a several irradiated detectors. Conductance

and Capacitance curves were simulated using the method described above. Figure 4.3 displays the

measured and simulated admittance curves taken at a bias of 100V at a temperature of T=292

K on a p-on-n FZ detector. The simulation was produced assuming two trap levels, where one

trap dominated the curves and the other contributed much less, but was necessary to include to

correctly explain the data. There is good agreement between the simulation and the measurements,

indicating that admittance measurements reveal important information for trap levels. Although

our model agrees well with data at 100 V or below, the low frequency capacitance at higher

voltages is smaller that predicted, as illustrated in Figure 4.4. It is not yet know the reason for

the discrepancy, though an unknown contribution from the DC current is suspected Therefore, the

conductance measurements were used to extract trap parameters and depletion depths.

The depth of the space charge region as a function of voltage for several diode detectors of

different types, irradiation, and fluences was calculated using equation (4.34). Since the amount of

charge collected from a trip sensor should be proportional to the active depth of the device, Charge

Collection measurements are compared to the depleted depth for one p-on-n FZ pion, Figure 5.1,

and one n-on-p MCz neutron, Figure 5.2, irradiated detector and good agreement is observed. The

extracted depth for various neutron sensors is displayed in Figure 5.3 and for various pion sensors

in Figure 5.4.

Deep level parameters for the most dominant deep level were extracted and presented in Table
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Figure 5.1: Extracted depletion region depth of a p-on-n FZ diode irradiated to 4.2E+14 pions/cm2

and Median Charge of a p-on-n FZ strip detector irradiated to 6.0E+14 pions/cm2. Also included
is the depth calculated using the 10kHz capacitance.
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Figure 5.2: Extracted depletion region depth of a n-on-p MCz diode irradiated to 5E+14
neutrons/cm2 and Median Charge of a n-on-p MCz strip detector irradiated to 5E+14
neutrons/cm2
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Figure 5.3: Depletion region depth as a function of voltage for neutron irradiated detectors, cal-
culated using equation (4.34)
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Table 5.1: Deep Level Parameters

Pion Detector Fluence Nact(1/cm3) Neff (1/cm3) Et(eV ) Capture Cross. (cm2)
N on P MCz 3.2*1014 1.7*1013 7.2*1012 -0.54 7.7*10−15

N on P FZ 3.2*1014 2.7*1012 7.9*1012 -0.55 9.8*10−15

P on N FZ 4.2*1014 3.5*1012 9.4*1012 -0.55 8.7*10−15

Neut. Detector Fluence Nact(1/cm3) Neff (1/cm3) Et(eV ) Capture Cross. (cm2)
N on P MCz 5*1014 7.2*1012 1.09*1013 -0.56 2.4*10−14

N on P FZ p-spray 2*1014 8.0*1011 5.76*1012 -0.58 4.*10−14

N on P FZ 2*1014 1.0*1012 5.76*1012 -0.58 4.20*10−14

5.1. Energy level, majority carrier capture cross section, active concentration at the crossover, and

average concentration calculated from the depletion voltage are presented. All energies are taken

with respect to the conduction band and are determined from an Arrhenius plot of the peak

frequency, as shown in Figure 5.5. The energy of deep level is close to midgap as expected. The

concentration of active deep levels at the depletion edge (Nact) is larger for pion than for neutron

detectors, although the average density (taken from Vdep) seems to be higher for neutrons. Capture

cross sections are larger for neutrons than for pions.
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6 Conclusions and Summary

Capacitance measurements can be used to determine the effective charge in silicon de-

tectors. In the case of un-irradiated devices, the are no deep levels present, and the analysis is

simplified making it possible to easily solve Poisson’s equation in two dimensions to account for

the geometry of a silicon strip detector. The geometry of the detector, namely the strip width

and pitch, create a small offset in the 1/C and 1/C2 curves which is referred to as ”the foot”.

The voltage range of ”the foot” can accurately be modeled with the two dimensional solution to

Poisson’s equation and the effective doping density can be determined by the slope of the 1/C2

curve.

In irradiated detectors, the analysis becomes a lot more difficult due to the introduction of deep

levels within the silicon bandgap. The deep levels will interact with the conduction and valence

bands to form a spatially non-uniform charge density arising from the steady state filling of the

deep levels. The deep levels will also complicate matters by introducing a frequency dependence

to the measured capacitance. The frequency response of the deep levels can be determined by

constructing an equivalent circuit that takes into account generation and recombination through a

deep levels as well as any effect that free carriers have on the device. Admittance measurements,

in particular the conductance, can be used to correct the frequency dependence of the measured

capacitance, and the depth of the space charge region as a function of voltage can be extracted.

Once the admittance is modeled using equations (4.40) and (4.41), deep level parameters can

be extracted from fitting the model to the data. The amplitude of the peak in the G/ω is directly
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proportional to both the depletion capacitance and the number of active deep levels within a few kT

of the Fermi level, so once Cd is known, Nact can be calculated using equation (4.32). The energy

Et of the deep level can be determined from the temperature dependence of the peak frequency

ωp by taking the slope of the Arrhenius plot. Once the energy is known, it can be plugged into

equation (4.42) along with ωp to determine the majority carrier capture cross section.

Although the method described in this paper gives a good idea of the concentration of deep

levels, it is not sensitive to the charge of the deep levels. This means that type of deep level, donor

or acceptor, cannot be known by this method alone, and must be inferred by other measurements.

One possibility is to look for inversion from CCE measurements, and then determine that the

dominant deep level must be of opposite type as the original if inversion occurs.

This method is also insensitive to the presence of a double junction that may arise in irradiated

devices [9]. Only one junction is assumed in the analysis above, but this method can still be of

use in a double junction model. Although this method cannot determine the presence of a double

junction, the capacitance Cd(V ) is the capacitance across the entire space charge region, which

includes both junctions if a double junction exists. This means that the total depleted depth d(V )

is the sum of depths of both junctions in the case of a double junction. This is due to the fact that

free charge carriers are sampling the entire device when they fill and empty the deep levels.

Since good agreement is observed when the space charge depth determined from equation

(4.34) is compared to the collected charge of a corresponding detector, this indicates that both

sensors are depleting from the front side. If any of these have gone through type inversion, it could

imply presence of a double junction citeEremin. The good agreement between the corrected depth

and charge collection also gives shows that corrected C-V is a good indicator of collected charge

as a function of voltage for detectors as long as inversion has not occurred. This could eliminate

the need to measure collected charge in many cases, and instead perform a much simpler C-V

measurement in its place.

In principal, the electric field within the an irradiated detector can be determined from the
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above considerations. This analysis does not go that far, as the possibility of a double junction

complicates the situation since the model presented in this paper assumes a single junction depleting

from only one side of the detector.
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